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Abstract. In 1989, N.V. Velichko [1] introduced a semi-quotient ws-mapping, and proved that a 

sequential space has a point-countable k-network if and only if it is a semi-quotient ws-image of a 

metric space. Recently, Shou Lin and Jinjin Li [2] introduced and studied the concept of wks-

mappings, wcs-mappings, and proved that every sequential space with a point-countable k-network 

is preserved by a continuous closed mapping. In this article, we introduce a class of mappings 

named wscc-mappings and give some properties of semi-quotient wscc-mappings. Moreover, we 

also give a result stating that every sequential space with a point-countable k-network is preserved 

by a continuous closed compact mapping. 
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1. Introduction
∗∗∗∗ 

A study of images of topological spaces under certain semi-quotient mappings is an important 

question in general topology. In 2009, to characterize spaces with a point-countable k-network as 

images of metric spaces under “nice” mappings, Shou Lin and Jinjin Li introduced concepts of wk-

mappings, wc-mappings, wks-mappings, wcs-mappings in order to modify semi-quotient mappings. In 

this article, we introduce a class of mappings named wscc-mappings and give some properties of semi-

quotient wscc-mappings.  

Throughout this article, all spaces are assumed to be Hausdorff, all mappings are assumed onto. 

For terms are not defined here, please refer to [3]. 

Definition 1.1 [1]. Suppose that a mapping f: X ⟶ Y, and  is a subspace of X. the mapping f  is 

called continuous about  if for each x  X and any neighborhood V of f(x) in Y there is a 

neighborhood W of x in X such that f(W )  V. 

Denote  = f :   Y. 

Lemma 1.2 [2]. Suppose that a mapping f: X ⟶ Y, and  is a subspace of X. The following are 

equivalent: 

_______ 
∗

 Tel.: 84- 01667.405.299 

   E-mail: :  nguyenxuanthuy_topology@yahoo.com.vn 



N.X. Thuy / VNU Journal of Science, Mathematics-Physics 28 (2012) 94-97 

 

95 

 (1) f  is continuous about . 

If a net  in  converges to a point x in X, then a net  converges to f(x) in Y. 

(2) If T is a subset of Y, then  ⊂ ( ).  

Remark 1.3 [2]. By Lemma 1.2, the restriction f  :  Y is continuous  f  is continuous 

about  ⟹ the striction  = f :   Y is continuous. 

Definition 1.4 [1]. A mapping f : (X, ) ⟶ Y  is called a semi-quotient ws-mapping if    ⊂ X  

and the following are satisfied: 

(1) The restriction  = f :   Y  is an s-mapping, i. e., (y) is a separable subspace of 

 for each y  Y. 

(2) f  is continuous about . 

 (3) A subset T of Y is closed if and only if   ⊂ (T). 

Definition 1.5 [2] 

 (1) f: (X,  ⟶ Y  is called a ws-mapping if it satisfies the conditions (1) and (2) in Definition 

1.4. 

(2) f : (X,  ⟶ Y  is called a semi-quotient mapping if it satisfies the condition (3) in Definition 

1.4. 

Definition 1.6 [2]. Suppose that a mapping  f : X ⟶ Y is continuous about . 

 (1) f: (X,  ⟶ Y  is called a wk-mapping  if K  is a compact subset of Y  and T  is a sequence in 

K, there is a sequence S  in such that S  has an accumulation in X  and f(S) is a subsequence of T. 

(2)  f: (X,  ⟶ Y  is called a wc-mapping  if T  is a convergent sequence in Y, there is a 

sequence S  in  such that S  has an accumulation in X  and  f(S) is a subsequence of T. 

(3) f: (X,  ⟶ Y is called a wks-mapping (wcs-mapping) if it is a wk-mapping (wc-mapping) and 

a ws-mapping. 

Definition 1.7 [2],[4]. Suppose that f : X ⟶ Y  is a continuous mapping.  

(1) f  is called a compact-covering mapping if K is a compact subset of Y, there is a compact subset 

L of X with  f(L) = K. 

(2) f is called a sequence-covering mapping if T is a convergent sequence including the limit point 

in Y, there is a compact subset L in X with  f(L) = T. 

Definition 1.8. Suppose that a mapping f : X ⟶ Y is continuous about . Then, f: (X,  ⟶ Y  is 

called a wscc-mapping if it is a compact-covering mapping and a ws-mapping. 

Remark 1.9. The following statements hold. 

(1) Compact-covering mappings  ⟹ sequence-covering mappings [2]. 

 (2) Compact-covering mappings  ⟹ wk-mappings ⟹ wc-mappings [2]. 

 (3) wscc-mappings ⟹ wks-mappings ⟹ wcs-mappings. 

 (4) wscc-mappings ⟹ sequence-covering ws-mappings. 

Definition 1.10 [5]. A mapping f : X ⟶ Y  is called weakly continuous  if  (V)  [ ( )]  for 

each open set V  in Y.  f : X ⟶ Y  is weakly continuous if and only if for each x  X and any 

neighborhood V of f(x) in Y, there is a neighborhood W of x in X with f(W) ⊂ . 
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2. Main results 

Theorem 2.1. Every continuous closed compact mapping is a semi-quotient wscc-mapping.   

Proof. Suppose that f: X ⟶ Y  is a continuous closed compact mapping. For a compact subset K of 

a space Y, and we put L = (K). Since f is closed compact mapping, L is a compact subset of X. This 

implies that there is a compact subset L of X with f(L) = f( (K)) = K. Therefore, f is a compact-

covering mapping. On the other hand, for each y  Y take an  (y), and put  = {  : y  Y}. It 

is obvious that, f : (X,  ⟶ Y  is continuous about  and is a ws-mapping. If T is a subset of Y, and 

 ⊂ (T), then  =  = f( )  T, thus T is closed in Y. Therefore f is 

a semi-quotient mapping. This implies that f  is a semi-quotient wscc-mapping. The proof is complete. 

Remark 2.2. From Theorem 2.1 and Remark 1.9, the following holds. 

(1) Continuous closed compact mappings ⟹ semi-quotient wscc-mappings ⟹ semi-quotient wks-

mappings ⟹ semi-quotient wcs-mappings. 

(2) Semi-quotient wscc-mappings ⟹ semi-quotient sequence-covering ws-mappings. 

Theorem 2.3. Let f: X ⟶ Y be a continuous closed compact mapping, and X be a sequential space, 

 be a subspace of a metric space M. If g: (M,  ⟶ X is a weakly continuous semi-quotient 

wscc-mapping. Then the composition h = g is a semi-quotient wscc-mapping.  

First, let us prove a lemma. 

Lemma 2.4. If  f : X ⟶ Y  and  g : Y ⟶ Z  are compact-covering mappings, then h =  f  is also 

a compact-covering mapping. 

Proof. Suppose that K is a compact subset of Z, because g is compact-covering mapping, there 

exists a compact subset  of Y such that g ( ) = K. On the other hand, since  is a compact subset 

in Y and f is compact-covering mapping, there is a compact subset L in X with f(L) = . Therefore, 

there exists a compact subset L in X such that h (L) = (  f) (L) = g(f(L)) = g( ) = K. This shows that 

h is a compact-covering mapping. 

Now, we give a proof of Theorem 2.3. 

Firstly, for each y  Y, take an  (y), and put  = ({  : y  Y}), h = g: M ⟶ Y 

and  = h . Since   , h : (M,  ⟶ Y is a ws-mapping and continuous about  Now, 

we show that h is a semi-quotient mapping. Suppose that T is a non-closed subset of Y, thus there is a 

sequence { } in T such that the sequence { } converges to y  T in Y.  For each n , put  = 

  and let � = {  : n }. Since f  is closed, �  is not closed in X, and since X is a sequential 

space, the sequence { } has a convergent subsequence. We can assume that the sequence { } 

converges to a point x in X, then f(x) = y. Because g is semi-quotient and � is not closed in X, there 

exists a m   \ (�). We shall prove that g(m) = x. Indeed, if g(m)  x, then there is a 

neighborhood V of g(m) in X such that    = . Since g is weakly continuous, there exists a 

neighborhood W of m in M such that g(W)  , thus W  (�) = , and it implies that m   

. This contradicts to m   \ (�). Therefore, g(m) = x and h(m) = y  T. For each 

open neighborhood U of m in M, U  (T)  U  (�)   = U    (�)  thus m 

  \ (T), hence    (T). It implies that h is a semi-quotient mapping. On the 

other hand, in view of the proof of Theorem 2.1, f is a compact-covering mapping. Finally, because g 
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is also a compact-covering mapping, by Lemma 2.4, h is a compact-covering mapping. Therefore, h is 

a semi-quotient wscc-mapping and so completes the proof.  

Remark 2.5. In Theorem 2.3, if sequential space X is a sequential space with a point-countable k-

network, then, because the closed mappings are quotient mappings and sequential spaces are preserved 

by quotient mappings [6], Y is a sequential space. By Corollary 16 in [2] and Theorem 2.3, we have 

the following corollary. 

Corollary 2.6. Every sequential space with a point-countable k-network is preserved by a 

continuous closed compact mapping.  

3. Conclusion 

In this article, a class of mappings, called wscc-mappings is introduced. Besides, some theorems 

are obtained, which improve some results of Shou Lin and Jinjin Li. 
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