Concerning semi-quotient mappings

Nguyen Xuan Thuy *

D7- Thuy Ung - Hoa Binh - Thuong Tin - Hanoi, Vietnam

Received 02 April 2012, received in revised from 14 June 2012

Abstract. In 1989, N.V. Velichko [1] introduced a semi-quotient *ws*-mapping, and proved that a sequential space has a point-countable *k*-network if and only if it is a semi-quotient *ws*-image of a metric space. Recently, Shou Lin and Jinjin Li [2] introduced and studied the concept of *wks*-mappings, *wcs*-mappings, and proved that every sequential space with a point-countable *k*-network is preserved by a continuous closed mapping. In this article, we introduce a class of mappings named *wscc-mappings* and give some properties of *semi-quotient wscc-mappings*. Moreover, we also give a result stating that every sequential space with a point-countable *k*-network is preserved by a continuous closed compact mapping.

Keywords: semi-quotient ws-mappings; wks-mappings; wcs-mappings; wscc-mappings; semiquotient wscc-mappings

1. Introduction

A study of images of topological spaces under certain semi-quotient mappings is an important question in general topology. In 2009, to characterize spaces with a point-countable *k*-network as images of metric spaces under "nice" mappings, Shou Lin and Jinjin Li introduced concepts of *wk*-mappings, *wcs*-mappings, *wcs*-mappings in order to modify semi-quotient mappings. In this article, we introduce a class of mappings named *wscc-mappings* and give some properties of *semi-quotient wscc-mappings*.

Throughout this article, all spaces are assumed to be *Hausdorff*, all mappings are assumed onto. For terms are not defined here, please refer to [3].

Definition 1.1 [1]. Suppose that a mapping $f: X \to Y$, and X_0 is a subspace of X. the mapping f is called continuous about X_0 if for each $x \in X$ and any neighborhood V of f(x) in Y there is a neighborhood W of x in X such that $f(W \cap X_0) \subset V$.

Denote $f_0 = f |_{X_0} \colon X_0 \longrightarrow Y$.

Lemma 1.2 [2]. Suppose that a mapping $f: X \to Y$, and X_0 is a subspace of X. The following are equivalent:

^{*} Tel.: 84- 01667.405.299

E-mail: : nguyenxuanthuy_topology@yahoo.com.vn

(1) f is continuous about X_0 .

If a net $\{x_d\}_{d\in U}$ in X_u converges to a point x in X, then a net $\{f(x_d)\}_{d\in U}$ converges to f(x) in Y.

(2) If *T* is a subset of *Y*, then $\overline{f_0^{-1}(T)} \subset f^{-1}(\overline{T})$.

Remark 1.3 [2]. By Lemma 1.2, the restriction $f|_{\overline{X_0}} : \overline{X_0} \to Y$ is continuous $\Rightarrow f$ is continuous about $X_0 \Rightarrow$ the striction $f_0 = f|_{X_0} : X_0 \to Y$ is continuous.

Definition 1.4 [1]. A mapping $f: (X, X_0) \to Y$ is called a *semi-quotient ws-mapping* if $X_0 \subset X$ and the following are satisfied:

(1) The restriction $f_0 = f|_{X_0} \colon X_0 \longrightarrow Y$ is an *s*-mapping, i. e., $f_0^{-1}(y)$ is a separable subspace of X_0 for each $y \in Y$.

(2) f is continuous about X_0 .

(3) A subset T of Y is closed if and only if $\overline{f_0^{-1}(T)} \subset f^{-1}(T)$.

Definition 1.5 [2]

(1) $f: (X, X_0) \to Y$ is called a *ws-mapping* if it satisfies the conditions (1) and (2) in Definition 1.4.

(2) $f: (X, X_{\emptyset}) \to Y$ is called a *semi-quotient mapping* if it satisfies the condition (3) in Definition 1.4.

Definition 1.6 [2]. Suppose that a mapping $f: X \to Y$ is continuous about X_0 .

(1) $f: (X, X_U) \to Y$ is called a *wk-mapping* if K is a compact subset of Y and T is a sequence in K, there is a sequence S in X_0 such that S has an accumulation in X and f(S) is a subsequence of T.

(2) $f: (X, X_0) \to Y$ is called a *wc-mapping* if T is a convergent sequence in Y, there is a sequence S in X_0 such that S has an accumulation in X and f(S) is a subsequence of T.

(3) $f: (X, X_0) \rightarrow Y$ is called a *wks-mapping* (*wcs-mapping*) if it is a *wk*-mapping (*wc*-mapping) and a *ws*-mapping.

Definition 1.7 [2],[4]. Suppose that $f: X \to Y$ is a continuous mapping.

(1) f is called a *compact-covering mapping* if K is a compact subset of Y, there is a compact subset L of X with f(L) = K.

(2) *f* is called a *sequence-covering mapping* if *T* is a convergent sequence including the limit point in *Y*, there is a compact subset *L* in *X* with f(L) = T.

Definition 1.8. Suppose that a mapping $f: X \to Y$ is continuous about X_0 . Then, $f: (X, X_0) \to Y$ is called a *wscc-mapping* if it is a compact-covering mapping and a *ws*-mapping.

Remark 1.9. The following statements hold.

(1) Compact-covering mappings \implies sequence-covering mappings [2].

(2) Compact-covering mappings \implies wk-mappings \implies wc-mappings [2].

(3) wscc-mappings \Rightarrow wks-mappings \Rightarrow wcs-mappings.

(4) wscc-mappings \Rightarrow sequence-covering ws-mappings.

Definition 1.10 [5]. A mapping $f: X \to Y$ is called *weakly continuous* if $f^{-1}(V) \subset [f^{-1}(V)]^{c}$ for each open set V in Y. $f: X \to Y$ is weakly continuous if and only if for each $x \in X$ and any neighborhood V of f(x) in Y, there is a neighborhood W of x in X with $f(W) \subset \overline{V}$.

2. Main results

Theorem 2.1. Every continuous closed compact mapping is a semi-quotient wscc-mapping.

Proof. Suppose that $f: X \to Y$ is a continuous closed compact mapping. For a compact subset K of a space Y, and we put $L = f^{-1}(K)$. Since f is closed compact mapping, L is a compact subset of X. This implies that there is a compact subset L of X with $f(L) = f(f^{-1}(K)) = K$. Therefore, f is a compact-covering mapping. On the other hand, for each $y \in Y$ take an $\mathbf{x}_y \in f^{-1}(y)$, and put $\mathbf{X}_0 = \{\mathbf{x}_y : y \in Y\}$. It is obvious that, $f: (X, \mathbf{X}_0) \to Y$ is continuous about \underline{X}_0 and is a ws-mapping. If T is a subset of Y, and $f_0^{-1}(T) \subset f^{-1}(T)$, then $\overline{T} = f(X_0 \cap f^{-1}(T)) = f(f_0^{-1}(T)) \subset T$, thus T is closed in Y. Therefore f is a semi-quotient mapping. This implies that f is a semi-quotient wscc-mapping. The proof is complete.

Remark 2.2. From Theorem 2.1 and Remark 1.9, the following holds.

(1) Continuous closed compact mappings \Rightarrow semi-quotient *wscc*-mappings \Rightarrow semi-quotient *wks*-mappings \Rightarrow semi-quotient *wcs*-mappings.

(2) Semi-quotient *wscc*-mappings \Rightarrow semi-quotient sequence-covering *ws*-mappings.

Theorem 2.3. Let f: $X \to Y$ be a continuous closed compact mapping, and X be a sequential space, M_0 be a subspace of a metric space M. If g: $(M, M_0) \to X$ is a weakly continuous semi-quotient wscc-mapping. Then the composition $h = f_0$ g is a semi-quotient wscc-mapping.

First, let us prove a lemma.

Lemma 2.4. If $f: X \to Y$ and $g: Y \to Z$ are compact-covering mappings, then $h = g_2 f$ is also a compact-covering mapping.

Proof. Suppose that K is a compact subset of Z, because g is compact-covering mapping, there exists a compact subset L_1 of Y such that $g(L_1) = K$. On the other hand, since L_1 is a compact subset in Y and f is compact-covering mapping, there is a compact subset L in X with $f(L) = L_4$. Therefore, there exists a compact subset L in X such that $h(L) = (g_0 f)(L) = g(f(L)) = g(L_1) = K$. This shows that h is a compact-covering mapping.

Now, we give a proof of Theorem 2.3.

Firstly, for each $y \in Y$, take an $\mathbf{x}_y \in f^{-1}(y)$, and put $\mathbf{M}_1 = g_0^{-1}(\{\mathbf{x}_y : y \in Y\})$, $h = f_{cg}: M \to Y$ and $\mathbf{h}_1 = h|_{\mathbf{M}_1}$. Since $\mathbf{M}_1 \subset \mathbf{M}_0$, $h: (M, \mathbf{M}_1) \to Y$ is a *ws*-mapping and continuous about \mathbf{M}_1 . Now, we show that *h* is a semi-quotient mapping. Suppose that *T* is a non-closed subset of *Y*, thus there is a sequence $\{\mathbf{y}_n\}$ in *T* such that the sequence $\{\mathbf{y}_n\}$ converges to $y \notin T$ in *Y*. For each $n \in \mathbb{N}$, put $\mathbf{x}_n = \mathbf{x}_{\mathbf{y}_n}$, and let $\mathcal{X} = \{\mathbf{x}_n : n \in \mathbb{N}\}$. Since *f* is closed, \mathcal{X} is not closed in *X*, and since *X* is a sequential space, the sequence $\{\mathbf{x}_n\}$ has a convergent subsequence. We can assume that the sequence $\{\mathbf{x}_n\}$ converges to a point *x* in *X*, then f(x) = y. Because *g* is semi-quotient and \mathcal{X} is not closed in *X*, there exists a $m \in \mathbf{g}_0^{-1}(\mathfrak{X}) \setminus \mathbf{g}^{-1}(\mathfrak{X})$. We shall prove that g(m) = x. Indeed, if $g(m) \neq x$, then there is a neighborhood *V* of g(m) in *X* such that $\overline{V} \cap \overline{\mathfrak{X}} = \emptyset$. Since *g* is weakly continuous, there exists a neighborhood *W* of *m* in *M* such that $g(W) \subset \overline{V}$, thus $W \cap \mathbf{g}^{-1}(\mathfrak{X}) = \emptyset$, and it implies that $m \notin \mathbf{g}_0^{-1}(\mathfrak{X})$. This contradicts to $m \in \mathbf{g}_0^{-1}(\mathfrak{X}) \setminus \mathbf{g}^{-1}(\mathfrak{X})$. Therefore, g(m) = x and $h(m) = y \notin T$. For each open neighborhood *U* of *m* in *M*, $U \cap \mathbf{h}_1^{-1}(T) \supseteq U \cap \mathbf{g}^{-1}(\mathfrak{X}) \cap \mathbf{M}_1 = U \cap \mathbf{M}_0 \cap \mathbf{g}^{-1}(\mathfrak{X}) \neq \emptyset$, thus *m* $\in \mathbf{h}_1^{-1}(T) \setminus \mathbf{h}^{-1}(T)$, hence $\mathbf{h}_1^{-1}(T) \not\subset \mathbf{h}^{-1}(T)$. It implies that *h* is a semi-quotient mapping. Finally, because *g* is also a compact-covering mapping, by Lemma 2.4, *h* is a compact-covering mapping. Therefore, *h* is a semi-quotient *wscc*-mapping and so completes the proof.

Remark 2.5. In Theorem 2.3, if sequential space X is a sequential space with a point-countable k-network, then, because the closed mappings are quotient mappings and sequential spaces are preserved by quotient mappings [6], Y is a sequential space. By Corollary 16 in [2] and Theorem 2.3, we have the following corollary.

Corollary 2.6. Every sequential space with a point-countable k-network is preserved by a continuous closed compact mapping.

3. Conclusion

In this article, a class of mappings, called *wscc*-mappings is introduced. Besides, some theorems are obtained, which improve some results of Shou Lin and Jinjin Li.

Acknowledgment

The author would like to thank the referee for many valuable comments.

References

- [1] N.V. Velichko, Ultrasequential spaces, *Mat. Zametki*, 45(2) (1989), 15-21 (in Russian) (=Math. Notes, 45, (1989), 99-103.
- [2] Shou Lin, Generalized Metric Spaces and Mappings, Second Edition, Beijing: Science Press, 2007 (in Chinese).
- [3] G. Gruenhage, E. Michael, and Y. Tanaka, Spaces determined by point- countable covers, *Pacific J. Math.*, 113, (1984), 303-332.
- [4] Shou Lin, Jinjin Li, Semi-quotient mappings and spaces with compact-countable *k*-networks, *Advances in Mathematics(China)*, 38(4), (2009), 417-426.
- [5] R. Engelking, General Topology, Berlin: Heldermann, (1989).
- [6] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68, (1961), 44-46.