Concerning semi-quotient mappings

Nguyen Xuan Thuy *

D7- Thuy Ung - Hoa Binh – Thuong Tin – Hanoi, Vietnam

Received 02 April 2012, received in revised from 14 June 2012

Abstract. In 1989, N.V. Velichko [1] introduced a semi-quotient *ws*-mapping, and proved that a sequential space has a point-countable *k*-network if and only if it is a semi-quotient *ws*-image of a metric space. Recently, Shou Lin and Jinjin Li [2] introduced and studied the concept of *wks*mappings, *wcs*-mappings, and proved that every sequential space with a point-countable *k*-network is preserved by a continuous closed mapping. In this article, we introduce a class of mappings named *wscc-mappings* and give some properties of *semi-quotient wscc-mappings*. Moreover, we also give a result stating that every sequential space with a point-countable *k*-network is preserved by a continuous closed compact mapping.

Keywords: semi-quotient *ws*-mappings; *wks*-mappings; *wcs*-mappings; *wscc*-mappings; semiquotient *wscc*-mappings

1. Introduction

A study of images of topological spaces under certain semi-quotient mappings is an important question in general topology. In 2009, to characterize spaces with a point-countable *k*-network as images of metric spaces under "nice" mappings, Shou Lin and Jinjin Li introduced concepts of *wk*mappings, *wc*-mappings, *wks*-mappings, *wcs*-mappings in order to modify semi-quotient mappings. In this article, we introduce a class of mappings named *wscc-mappings* and give some properties of *semiquotient wscc-mappings.*

Throughout this article, all spaces are assumed to be *Hausdorff*, all mappings are assumed onto. For terms are not defined here, please refer to [3].

Definition 1.1 [1]. Suppose that a mapping *f*: $X \rightarrow Y$, and X_0 is a subspace of X. the mapping *f* is called continuous about X_0 if for each $x \in X$ and any neighborhood *V* of $f(x)$ in *Y* there is a neighborhood *W* of *x* in *X* such that $f(W \cap X_0) \subseteq V$.

Denote $f_0 = f |_{X_0}: X_0 \longrightarrow Y$.

Lemma 1.2 [2]. Suppose that a mapping *f: X* \rightarrow *Y*, and X_0 is a subspace of *X*. The following are equivalent:

 $\overline{}$

[∗] Tel.: 84- 01667.405.299

E-mail: : nguyenxuanthuy_topology@yahoo.com.vn

 (1) *f* is continuous about \mathbf{X}_0 .

If a net $[x_d]_{d \in \mathcal{U}}$ in X_k converges to a point *x* in *X*, then a net $[f(x_d)]_{d \in \mathcal{U}}$ converges to $f(x)$ in *Y*.

(2) If *T* is a subset of *Y*, then $\overline{f_0^{-1}(T)} \subset \overline{f}^{-1}(\overline{T})$.

Remark 1.3 [2]. By Lemma 1.2, the restriction $f |_{\overline{X_0}} : \overline{X_0} \to Y$ is continuous $\Rightarrow f$ is continuous about $X_0 \Rightarrow$ the striction $f_0 = f |_{X_0}: X_0 \rightarrow Y$ is continuous.

Definition 1.4 [1]. A mapping $f : (X, X_0) \rightarrow Y$ is called a *semi-quotient ws-mapping* if $X_0 \subset X$ and the following are satisfied:

(1) The restriction $f_0 = f |_{X_0}: X_0 \to Y$ is an *s-mapping*, i. e., $f_0^{-1}(y)$ is a separable subspace of X_0 for each $y \in Y$.

 $(2)f$ is continuous about X_0 .

(3) A subset *T* of *Y* is closed if and only if $\overline{f_{\mathbf{u}}}^{-1}(\overline{T}) \subset f^{-1}(T)$.

Definition 1.5 [2]

(1) *f:* (X, $X_{\mathbf{0}}$) \rightarrow Y is called a *ws-mapping* if it satisfies the conditions (1) and (2) in Definition 1.4.

 $(2) f : (X, X_0) \rightarrow Y$ is called a *semi-quotient mapping* if it satisfies the condition (3) in Definition 1.4.

Definition 1.6 [2]. Suppose that a mapping $f: X \rightarrow Y$ is continuous about X_0 .

(1) *f*: $(X, X_0) \rightarrow Y$ is called a *wk-mapping* if *K* is a compact subset of *Y* and *T* is a sequence in *K*, there is a sequence *S* in \mathbf{X}_0 such that *S* has an accumulation in *X* and $f(S)$ is a subsequence of *T*.

(2) *f:* (X, $\mathbf{X_0}$) \rightarrow *Y* is called a *wc-mapping* if *T* is a convergent sequence in *Y*, there is a sequence *S* in X_0 such that *S* has an accumulation in *X* and $f(S)$ is a subsequence of *T*.

(3) *f*: $(X, X_0) \rightarrow Y$ is called a *wks-mapping* (*wcs-mapping*) if it is a *wk*-mapping (*wc*-mapping) and a *ws*-mapping.

Definition 1.7 [2], [4]. Suppose that $f: X \rightarrow Y$ is a continuous mapping.

 (1) *f* is called a *compact-covering mapping* if *K* is a compact subset of *Y*, there is a compact subset *L* of *X* with $f(L) = K$.

(2) *f* is called a *sequence-covering mapping* if *T* is a convergent sequence including the limit point in *Y*, there is a compact subset *L* in *X* with $f(L) = T$.

Definition 1.8. Suppose that a mapping $f : X \to Y$ is continuous about X_0 . Then, $f: (X, X_0) \to Y$ is called a *wscc-mapping* if it is a compact-covering mapping and a *ws*-mapping.

Remark 1.9. The following statements hold.

(1) Compact-covering mappings \Rightarrow sequence-covering mappings [2].

(2) Compact-covering mappings \Rightarrow *wk*-mappings \Rightarrow *wc*-mappings [2].

(3) *wscc*-mappings \Rightarrow *wks*-mappings \Rightarrow *wcs*-mappings.

(4) *wscc*-mappings \Rightarrow sequence-covering *ws*-mappings.

Definition 1.10 [5]. A mapping $f : X \to Y$ is called *weakly continuous* if $f^{-1}(V) \subseteq [f^{-1}(V)]^c$ for each open set *V* in *Y*. $f: X \to Y$ is weakly continuous if and only if for each $x \in X$ and any neighborhood *V* of $f(x)$ in *Y*, there is a neighborhood *W* of *x* in *X* with $f(W) \subset \overline{V}$.

2. Main results

Theorem 2.1. Every continuous closed compact mapping is a semi-quotient wscc-mapping.

Proof. Suppose that $f: X \to Y$ is a continuous closed compact mapping. For a compact subset K of a space *Y*, and we put $L = f^{-1}(K)$. Since *f* is closed compact mapping, *L* is a compact subset of *X*. This implies that there is a compact subset *L* of *X* with $f(L) = f(f^{-1}(K)) = K$. Therefore, *f* is a compactcovering mapping. On the other hand, for each $y \in Y$ take an $x_y \in f^{-1}(y)$, and put $X_0 = \{x_y : y \in Y\}$. It is obvious that, $f: (X, X_0) \to Y$ is continuous about X_0 and is a *ws*-mapping. If *T* is a subset of *Y*, and $f_0^{-1}(T) \subset f^{-1}(T)$, then $\overline{T} = f(X_0 \cap f^{-1}(T)) = f(f_0^{-1}(T)) \subset T$, thus *T* is closed in *Y*. Therefore *f* is a semi-quotient mapping. This implies that *f* is a semi-quotient *wscc*-mapping*.* The proof is complete.

Remark 2.2. From Theorem 2.1 and Remark 1.9, the following holds.

(1) Continuous closed compact mappings \Rightarrow semi-quotient *wscc*-mappings \Rightarrow semi-quotient *wks*mappings \Rightarrow semi-quotient *wcs*-mappings.

(2) Semi-quotient *wscc*-mappings \Rightarrow semi-quotient sequence-covering *ws*-mappings.

Theorem 2.3. Let f: $X \rightarrow Y$ be a continuous closed compact mapping, and X be a sequential space, M_0 be a subspace of a metric space M. If g: (M, M_0) \rightarrow X is a weakly continuous semi-quotient wscc-mapping. Then the composition $h = f_{\alpha}g$ is a semi-quotient wscc-mapping.

First, let us prove a lemma.

Lemma 2.4. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are compact-covering mappings, then $h = g_2 f$ is also a compact-covering mapping.

Proof. Suppose that *K* is a compact subset of *Z*, because *g* is compact-covering mapping, there exists a compact subset L_1 of *Y* such that $g(L_1) = K$. On the other hand, since L_1 is a compact subset in *Y* and *f* is compact-covering mapping, there is a compact subset *L* in *X* with $f(L) = L_1$. Therefore, there exists a compact subset *L* in *X* such that $h(L) = (g \circ f)(L) = g(f(L)) = g(L_1) = K$. This shows that *h* is a compact-covering mapping.

Now, we give a proof of Theorem 2.3.

Firstly, for each $y \in Y$, take an $x_y \in f^{-1}(y)$, and put $M_1 = g_0^{-1}(\{x_y : y \in Y\})$, $h = f_{\circ}g: M \to Y$ and $h_1 = h|_{M_1}$. Since $M_1 \subset M_0$, $h : (M, M_1) \to Y$ is a *ws*-mapping and continuous about M_1 . Now, we show that *h* is a semi-quotient mapping. Suppose that *T* is a non-closed subset of *Y*, thus there is a sequence $\{ y_n \}$ in *T* such that the sequence $\{ y_n \}$ converges to $y \notin T$ in *Y*. For each $n \in \mathbb{N}$, put $x_n =$ $\mathbf{x}_{\mathbf{y}_n}$, and let $\mathcal{X} = {\mathbf{x}_n : n \in \mathbb{N}}$. Since f is closed, \mathcal{X} is not closed in X, and since X is a sequential space, the sequence $\{x_n\}$ has a convergent subsequence. We can assume that the sequence $\{x_n\}$ converges to a point *x* in *X*, then $f(x) = y$. Because *g* is semi-quotient and *X* is not closed in *X*, there exists a $m \in \mathbf{g}_{\mathbf{G}}^{-1}(\mathfrak{X}) \setminus \mathbf{g}^{-1}(\mathfrak{X})$. We shall prove that $g(m) = x$. Indeed, if $g(m) \neq x$, then there is a neighborhood *V* of $g(m)$ in *X* such that $\overline{V} \cap \overline{\mathfrak{F}} = \emptyset$. Since *g* is weakly continuous, there exists a neighborhood *W* of *m* in *M* such that $g(W) \subseteq \overline{V}$, thus $W \cap g^{-1}(\mathfrak{X}) = \emptyset$, and it implies that $m \notin$ $g_0^{-1}(\mathfrak{X})$. This contradicts to $m \in g_0^{-1}(\mathfrak{X}) \setminus g^{-1}(\mathfrak{X})$. Therefore, $g(m) = x$ and $h(m) = y \notin T$. For each open neighborhood *U* of *m* in <u>*M*, *U* \cap **h**₁</u>⁻¹(*T*) $\supset U \cap g^{-1}(\mathfrak{X}) \cap M_1 = U \cap M_0 \cap g^{-1}(\mathfrak{X}) \neq \emptyset$, thus *m* $\overline{f}(T)$ $\overline{f}(T)$ $\overline{f}(T)$, hence $\overline{h_1^{-1}(T)}$ $\overline{f}(T)$ $\overline{f}(T)$. It implies that *h* is a semi-quotient mapping. On the other hand, in view of the proof of Theorem 2.1, *f* is a compact-covering mapping. Finally, because *g*

is also a compact-covering mapping, by Lemma 2.4, *h* is a compact-covering mapping. Therefore, *h* is a semi-quotient *wscc*-mapping and so completes the proof.

Remark 2.5. In Theorem 2.3, if sequential space *X* is a sequential space with a point-countable *k*network, then, because the closed mappings are quotient mappings and sequential spaces are preserved by quotient mappings [6], *Y* is a sequential space. By Corollary 16 in [2] and Theorem 2.3, we have the following corollary.

Corollary 2.6. Every sequential space with a point-countable k-network is preserved by a continuous closed compact mapping.

3. Conclusion

In this article, a class of mappings, called *wscc-*mappings is introduced. Besides, some theorems are obtained, which improve some results of Shou Lin and Jinjin Li*.*

Acknowledgment

The author would like to thank the referee for many valuable comments.

References

- [1] N.V. Velichko, Ultrasequential spaces, *Mat. Zametki,* 45(2) (1989), 15-21 (in Russian) (=Math. Notes, 45, (1989), 99-103.
- [2] Shou Lin, *Generalized Metric Spaces and Mappings*, Second Edition, Beijing: Science Press, 2007 (in Chinese).
- [3] G. Gruenhage, E. Michael, and Y. Tanaka, Spaces determined by point- countable covers, *Pacific J. Math.*, 113, (1984), 303-332.
- [4] Shou Lin, Jinjin Li, Semi-quotient mappings and spaces with compact-countable *k*-networks, *Advances in Mathematics(China)*, 38(4), (2009), 417-426.
- [5] R. Engelking, *General Topology*, Berlin: Heldermann, (1989).
- [6] N. Levine, A decomposition of continuity in topological spaces, *Amer. Math. Monthly*, 68, (1961), 44-46.