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Nonlinear stability analysis of eccentrically stiffened S-FGM 

imperfect plates resting on elastic foundations  
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Abstract. This paper presents an analytical approach to investigate effects of elastic foundation 

and stiffeners on the nonlinear buckling behavior of eccentrically stiffened S-FGM imperfect 

plates subjected to mechanical loads. By using classical plate theory, Bubnov-Galerkin
’
s method 

and stress function, the close-form expressions of buckling loads and nonlinear post-buckling 

load-deflection curves of the S-FGM plates are determined. 

Keywords: Nonlinear stability, Eccentrically stiffened S-FGM Plates, Elastic foundations, 

Classical plate theory. 

1. Introduction
∗∗∗∗ 

Functionally Graded Materials (FGMs) are microscopically inhomogeneous composites usually 

made from a mixture of metals and ceramics. By gradually varying the volume fraction of constituent 

materials, their effective properties exhibit a smooth and continuous change from one surface to 

another, thus eliminating interface problems and mitigating thermal stress concentrations. Due to 

essential characteristics such as high stiffness, excellent thermal resistance capacity compared with 

ordinary materials, FGMs have been widely used for a variety of engineering applications [1]. Cheng 

and Kitipornchai [2] proposed a membrane analogy to derive an exact explicit eigenvalues for 

compression buckling and vibration of FGM plates on a Winkler-Pasternak foundation based on the 

first-order shear deformation plate theory. 

There are many researches on FGM plates, such as Duc et al. [3] investigated the effects of elastic 

foundations on nonlinear stability of FGM plates under compressive and thermal loads. However, the 

recent attention focuses only on P-FGM plates and shells (with metal-ceramic or ceramic-metal 

layers). In fact, there is a little understanding about the S-FGM with metal-ceramic-metal (M-C-M) or 

ceramic-metal-ceramic layers (C-M-C) plate which needs a further study. The M-C-M plate is high 

stiffness, can conduct electricity in both two metal sides. These have many applications in electronics 

and communication. Recently, Duc and Cong [4] have investigated nonlinear dynamic response of 
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imperfect symmetric thin S-FGM plate with metal-ceramic-metal layers on an elastic foundation. But 

no one presents static stability analysis of S-FGM plate with M-C-M layers.  

In order to increase the loading ability of composite structures, one usually choose stiffeners to 

reinforce them. Najafizadeh et al. [5] studied static buckling behavior of axially compressed stiffened 

cylindrical FGM shells subjected to mechanical loads. Bich et al. [6, 7] investigated the nonlinear 

static and dynamic responses of eccentrically stiffened FGM plates, shells and panels using an  

analytical approach. 

  As far as the authors
’
 knowledge, the buckling behavior of eccentrically stiffened S-FGM plates 

(M-C-M) resting on an elastic foundation under combined loads have not been investigated. This 

paper studied the nonlinear buckling and post-buckling of eccentrically stiffened S-FGM imperfect 

plates (M-C-M) applying Galerkin’s method and stress function. The effects of  geometric parameters, 

volume fraction of constituent materials, stiffeners, elastic foundations on nonlinear buckling behavior 

of S-FGM plates are calculated numerically.  

2. Eccentrically stiffened S-FGM (ESS-FGM) plates on elastic foundations 

2.1. ESS-FGM plates on elastic foundations 

  We consider a rectangular ESS-FGM plate that consists of layers made of functionally graded 

metal-ceramic and metal materials. The outer surface layers of the plate are metal-rich, but the core of 

the FGM plate is pure ceramic.  The plate is referred to a Cartesian coordinate system , ,x y z , where 

xy  is the midplane of the plate and z  is the thickness coordinator,  / 2 / 2h z h− ≤ ≤ .The length, 

width , and total thickness of the plate are   a , b  and h . Applying a Sigmoi power law distribution for 

S-FGM plates, the volume fractions of metal and ceramic, 
mV  and 

cV , are assumed as [8]: 

   

2
, / 2 0

( )
2

, 0 / 2

N

c N

z h
h z

h
V z

z h
z h

h

 + 
− ≤ ≤ 

 
= 

− + 
≤ ≤   

    ,    ( ) 1 ( )
m c

V z V z= −       (1) 

where the volume fraction index N  is a nonnegative number that defines the material distribution 

and can be chosen to optimize the structural response. 

It is assumed that the effective properties Peff  of the functionally graded plate, such as the modulus 

of elasticity E, vary in the thickness direction z  and can be determined by the linear rule of mixture as   

                                                                                           

                                      (2) 

 

Pr ( ) Pr ( )eff m m c cP V z V z= +
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where Pr  denotes a material property, and the subscripts m  and c  stand for the metal and 

ceramic constituents, respectively. 

From Eqs. (1) and (2), the effective properties of the S-FGM plate can be written as follows:  

2
, / 2 0

( )
2

, 0 / 2

N

m cm N

z h
h z

h
E z E E

z h
z h

h

 + 
− ≤ ≤ 

 
= + 

− + 
≤ ≤     

   

mccm EEE −=  ,        

and the Poisson ratio is assumed to be a constant: 

     
( )z constν ν= =

                (3) 

The load-displacement relationship of the foundation is assumed as following 

    wKwKq
2

210 ∇−=                                             (4)                                                                 

where 
2

2

2

2
2

yx ∂

∂
+

∂

∂
=∇   is Laplace operator, w is the deflection of the plate, and 1 2,K K  are the 

Pasternak foundation stiffness. 

2.2. Governing equations 

     According to the classical shell theory and geometrical nonlinearity in von Karman-Donnell 

sense[8], the strains at the middle surface and curvatures are related to the displacement components 

, ,u v w in the , ,x y z  coordinate directions as [9]: 

                        

0

0

0

x x x

y y y

xy xy xy

z

ε ε χ

ε ε χ

γ γ χ

     
     

= +     
     
     

  ,                         (5) 

where 
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χ

χ

   −
   

= −   
   −   

 .             (6)        

From Eq. (5) the strains must be relative in the deformation compatibility equation 
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22 0 2 02 0 2 2 2

2 2 2 2

y xyx w w w

y x x y x y x y

ε γε ∂ ∂  ∂ ∂ ∂ ∂
+ − = − 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
                                                   (7) 

Hook’s stress-strain relation is applied for the plate 

( ) 2
, ( , ) ( , )

1
x y x y y x

E
σ σ ε ε ν ε ε

ν
 = + −

 

 2(1 )
xy xy

E
σ γ

ν
=

+  ,  2(1 )
xz xz

E
σ γ

ν
=

+ ,  2(1 )
yz yz

E
σ γ

ν
=

+     (8a) 

And for stiffeners 

0

0

st

x x

st

y y

E

E

σ ε

σ ε

=

=
                     

(8b) 

Where E0 is Young’s modulus of stiffeners. 

Taking into account the contribution of stiffeners by the smeared stiffeners technique and omitting 

the twist of stiffeners and integrating the stress-strain equations and their moments through the 

thickness of the plate, we obtain the expressions for force and moment resultant of an eccentrically 

stiffened S-FGM plate as [7]:  
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 (9) 

Where ( ), , 1,2 6, ,ij ij ijA B D i j = are extensional, coupling and bending stiffeners of the plate 

without stiffeners. 
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With 
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In relation (9) and (11) E0 is Young modulus of stiffener which takes the value 0 mE E= because 

the stiffeners are put at the outer surface. The spacing of the longitudinal and transversal stiffeners are 

denoted by 1s and 2s  respectively. The quantities 1 2,A A are the cross-section areas of stiffeners and 

1 2 1 2, , ,I I z z are the second moments of cross section areas. 

The strain-force resultant relations reversely are obtained from Eq. (9) 
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Where  
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Substituting Eq. (12) into Eq. (9) yields: 
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Where 
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Based on the classical plate theory we have: 
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The first two of Eq. (16) are satisfied automatically by choosing a stress function   as: 

                               (17) 

 

The substitution of Eq. (12) into the compatibility Eq. (7) and  Eq. (17) into the third of Eq. (16)  

we have a system of equations: 
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For an S-FGM imperfect  plate, following [9], Eqs. (18) and (19) are modified into form as
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in which ( )* * ,  w yw x= is a known function representing initial small imperfection of the plate 

and w is additional deflection of plate. 

The couple of nonlinear Eqs. (18) and (19) or Eqs.(20) and (21) in terms of two dependent 

unknown w and φ are used to investigate the stability of in-plane compressed ESS-FGM plates on 

elastic foundation. 
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3. Solution of basic equations 

 Consider an ESS-FGM imperfect plate with simply supported and subject to in-plane compressive 

loads of intensities 
1p

 
and 

2p  respectively. In this case the boundary conditions are 

100,  0,    ,  0
x x xx y

w M N N p h N= = = = − = at 0,  ,x a=  

00,  0,    ,  0
y y y xyy

w M N N p h N= = = = − = at 0,  .y b=    (22)   

The approximate solutions of Eq. (20) and (21) satisfying the mentioned conditions (22) are 

chosen in the form as 

sin sin ,m nw f x yλ µ=  

* sin sin ,m nw h x yξ λ µ=                (23)                                                          

  where ,
m
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π
λ = ,

n

n

b

π
µ =  m  and n  are the half-wave numbers along the x -axis and the 

y -axis, respectively, and ξ is a imperfection size of the ESS-FGM plates. 

 Substituting Eq. (23) into Eq. (20) and solving obtained equation for unknown ϕ , lead to 
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(25) 

Substituting the expressions Eqs. (24) and (25) into Eq. (21) and using Bubnov-Galerkin method 

for the resulting equation yield 
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By introducing 
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Eq. (26) can be rewritten as 

(28) 

 

 

 

 

Eq. (28) is used to analyze the buckling and post-buckling of ESS-FGM imperfect plates resting 

on elastic foundations and under the in-plane compressive loads. 

With only axial compressive load
1p , Eq. (28) is reduced to 
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For perfect plates, 0ξ = , Eq. (29) representing the load-deflection curve of plate, leads to 
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With un-stiffened S-FGM plates( 1 2 0A A= = and 1 2 0I I= = ) Eq. (28) become 
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4. Numerical results and discussions  

       In this paper, some examples will be presented for perfect and imperfect simply supported–

symmetric S-FGM plate. We use the above formulations to investigate the effect of material 

parameters on the buckling and post-buckling behavior of the eccentrically stiffened S-FGM plate. We 

consider a square metal-ceramic-metal plate which consists of aluminum and alumina with 

geometrical parameters: 

( )0.005 ; 1; 1;  0.3;   70 ;  380 ; / 40 ;  a/ 1;h m m n v Em GPa Ec GPa b h b= = = = = = = =
 

This ESS-FGM plate with parameters of stiffeners:   

( ) ( ) ( ) ( ) ( )1 2 1 2 10.2 ; 0.2 ; 0.003 ; 0.003 ; 0.004 ;s m s m h m h m b m= = = = =
2 0.004( );  b m=  

and elastic modulus of stiffeners are taken by  

( )0
70

m
E E GPa= =

  

        In Fig.1, /f h  denotes the dimension-less maximum deflection of plate, the plate act on 

axially compression and foundations interaction are ignored. 

 

Fig.1. Post-buckling curves for ESS-FGM perfect and imperfect plates under axial compression without elastic 

foundations 

To illustrate the effects of foundations on the post-buckling behavior of ESS-FGM plate, we 

consider three aspects: axially compressed plate resting on the Winkler foundation 

( )1 20,  0 ,K K≠ = on the Pasternak foundation ( )1 20,  0 ,K K= ≠ and on both foundations with 

( )1 20,  0K K≠ ≠ . 
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Fig.2. Effects of Winkler foundation on nonlinear buckling for the ESS-FGM plate  

 

Fig.3. Effects of Pasternak foundation on nonlinear buckling for the ESS-FGM plate 
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  Fig. 4. Effects of both elastic foundations on nonlinear buckling for the ESS-FGM plate 

Figs. 2, 3 and 4 show  that a ESS-FGM plate resting on Winkler and Pasternak foundations  have 

better behavior than a single Pasternak foundation or Winkler foundation, and  the Pasternak 

foundation has stronger effect than Winkler foundation.    

  Fig. 5 shows influence of volume fraction index on nonlinear postbuckling for ESS-FGM plates 

with the ratio / 40b h =  under compression loads on one side with three volume fraction indexes 

(0,1, 2)N = .  As we can see, the smaller the volume fraction coefficient N is, the stronger buckling 

and postbuckling capacity loads are. Indeed, the similar feature has been found in [4] for S-FGM 

plates with ceramic-metal-ceramic layers without stiffeners.           

 

Fig.5. Effects of volume fraction index on postbuckling of the ESS-FGM plate. 
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Finally, we compare behaviors of the ESS-FGM plate and the un-stiffened S-FGM plates resting 

on elastic foundations (
1 2, 0K K ≠ ). To illustrate these effects we consider ESS-FGM plates with 

geometrical parameters:  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 20.012 ; 0.2 ; 0.2 ;  0.01 ; 0.01 ; 0.016 ; 0.016 ;h m s m s m h m h m b m b m= = = = = = =

  

Fig. 6. Effect of stiffeners on buckling of perfect ESS-FGM plate 

 

Fig. 7. Effect of stiffeners on buckling of imperfect ESS-FGM plate 

The influence of perfection or imperfection on the stability of ESS-FGM and un-stiffened S-FGM 

plates under compression and resting on elastic foundation are shown in figs. 6 and 7. The loading 
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ability of the  ESS-FGM plates are better than S-FGM plates, in both cases of  perfect and imperfect 

plates. 

5.Conclusions 

Analytical approach has been developed in this paper for studying nonlinear buckling and 

postbuckling behaviors of eccentrically stiffened S- FGM imperfect rectangular thin plates resting on 

elastic foundations under axial compression loads. 

The governing equations of eccentrically stiffened S-FGM are based upon the classical plate 

theory and smeared stiffeners technique. The modulus of elasticity E  changes with the thickness in 

z directions and constant Poisson’s ratio. The basic equations to investigate the stability of 

eccentrically stiffened S-FGM plates and some expression of nonlinear buckling and post-buckling 

behavior of the S-FGM plates are determined in this paper.  

The influences of Winkler and Pasternak foundations, stiffeners and imperfection sensitivity on 

nonlinear stability of plates are discussed in details. ESS-FGM plate have better loading capacity  than 

the un-stiffened  S-FGM plate under axial compression loads. 
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