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Abstract: This paper presents an analytical approach to investigate the nonlinear stability of thin 

annular spherical shells made of functionally graded materials (FGM) with ceramic – metal – 

ceramic layers (S-FGM) under uniform external pressure and resting on elastic foundations. 

Material properties are graded in the thickness direction according to a Sigmoi power law 

distribution in terms of the volume fractions of constituents (S-FGM). Equilibrium and 

compatibility equations for annular spherical shells are derived by using the classical thin shell 

theory in terms of the shell deflection and the stress function. Approximate analytical solutions are 

assumed to satisfy simply supported boundary condition and Galerkin method is applied to obtain 

closed – form of load – deflection paths. An analysis is carried out to show the effects of material and 

geometrical properties and combination of loads on the stability of S-FGM annular spherical shells. 

Keywords: Nonlinear stability, S-FGM annular spherical shells, elastic foundations, external 

pressure. 

1. Introduction
∗∗∗∗ 

The problems relating to the thermo-elastic, dynamic, buckling and post-buckling analyses of 

structures made of FGMs have attracted attention of many researchers. This is mainly due to the 

increasing use of FGM as the components of structures in the advanced engineering. FGM consisting 

of metal and ceramic constituents have received remarkable attention in structural applications. 

Smooth and continuous change in material properties enable FGM to avoid interface problems and 

unexpected thermal stress concentrations. By high performance heat resistance capacity, FGM is now 

chosen to use as structural components exposed to severe temperature conditions such as aircraft, 

aerospace structures, nuclear plants and other engineering applications. Furthermore, with the 

development of aesthetics, architectures and designs are becoming diversified and abundant. In 

response to these factors, the structure has special shape also increasingly more popular in life, thus, it 

requires study of shape and material of structures to be cared.      
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There has been recently a few of publications on the structures made of FGMs with ceramic-metal-

ceramic layer or metal-ceramic-metal layer. For examples, Duc et al. [1] studied the nonlinear 

buckling of higher deformable S-FGM thick circular cylindrical shells with metal-ceramic-metal 

layers surrounded on elastic foundations in thermal environment, Duc and Thang analyzed the 

nonlinear response of imperfect eccentrically stiffened ceramic-metal-ceramic S-FGM thin circular 

cylindrical shells surrounded on elastic foundations under uniform radial load [2] and the nonlinear 

buckling of imperfect eccentrically stiffened metal-ceramic-metal S-FGM thin circular cylindrical 

shells with temperature-dependent properties in thermal environments [3] with material properties are 

graded in the thickness direction according to a Sigmoid power law distribution in terms of the volume 

fractions of constituents (S-FGM), in addition to several other studies [4, 5] of these authors’ group.  

However, until now, the number of these researches is still very limited, because according to the 

classical distribution of materials FGM, considerable researches have focused only on the type of 

distribution, where one surface is rich metal and one is rich ceramic, and very few studies on other 

types of distributions. Eslami and Kiani [6] studied an exact solution for thermal buckling of annular 

FGM plates on an elastic medium, Eslami and Bagri generalized coupled thermo-elasticity of 

functionally graded annular disk considering the Lord – Shulman theory [7], Duc et al. [8] studied the 

nonlinear buckling analysis of thin FGM annular spherical shells on elastic foundations under external 

pressure and thermal loads, and [9] analyzed the nonlinear post-buckling of thin FGM annular 

spherical shells with metal – ceramic layer under mechanical loads and resting on elastic foundations. 

The present study investigates is the nonlinear stability of thin S-FGM annular spherical shells 

with ceramic-metal-ceramic layers on elastic foundations under external pressure.  

2. Theoretical formulations 

We consider an annular spherical shell made of FGM, resting on elastic foundations with radius of 

curvature R, base radii 
1 0
,r r  and thickness h . The FGM annular spherical shell is subjected to external 

pressure q  uniformly distributed on the outer surface as shown in Fig.1 [9]. It is defined in coordinate 

system ( , , z)ϕ θ , where ϕ  and θ  are in the meridional and circumferential direction of the shells, 

respectively and z  is perpendicular to the middle surface positive inwards. 

 

Fig. 1. Configuration of S-FGM annular spherical shell. 
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Asume that the shell is made from a mixture of ceramic and metal constituents, with ceramic-

metal-ceramic layer. Not the same as the P- FGM, where one surface is rich metal and one is rich 

ceramic, in this study, suppose that the material composition of the shell varies smoothly along the 

thickness by a Sigmoi power law in terms of the volume fractions of the constituents as 
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 in here, k  (volume fraction index) is a non-negative number that defines the material distribution, 

subscripts m  and c  represent the metal and ceramic constituents, respectively. So the effective 

properties of S-FGM annular spherical shell such as modulus of elasticity of FGM annular spherical 

shell can be defined as 
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The Poisson ratio ν  is assumed to be constant ( )v z const=
 
and , .

mc m c mc m c
E E E α α α= − = −  

The reaction-deflection relation of Pasternak foundation is given by [9, 10]
1 2e

q k w k w= − ∆  

where
2 2

2 2 2

1 1w w w
w

r rr r θ

∂ ∂ ∂
∆ = + +

∂∂ ∂
is a Laplace’s operator, w  is the deflection of the annular spherical 

shell, 
1

k is Winkler foundation modulus and 
2

k is the shear layer foundation stiffness of Pasternak 

model. 

In the present study, the classical shell theory is used to obtain the equilibrium and compatibility 

equations as well as expressions of buckling loads and nonlinear load–deflection curves of thin S-

FGM annular spherical shells. For a thin annular spherical shell it is convenient to introduce a variable 

r , referred as the radius of parallel circle with the base of shell and defined by sinr R ϕ= . Moreover, 

due to shallowness of the shell it is approximately assumed that cos 1, Rd drϕ ϕ= = . 

Taking into account Von Karman – Donnell nonlinear terms as [9] and under the classical shell 

theory, the strains at the middle surface and the change of curvatures and twist are related to the 

displacement components , ,u v w  in the , , zϕ θ coordinate directions, respectively 
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with 0

r
ε and 0

θε  are the normal strains, 
r

θγ  is the shear strain at the middle surface of the spherical shell, 

, ,
r rθ θχ χ χ are the changes of curvatures and twist.  
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The strains across the shell thickness at a distance z  from the mid-plane are:  
0 0; ; . (4)

r r r r r r
z z zθ

θ θ θ θ θε ε χ ε ε χ γ γ χ= − = − = −  

By using Eqs. (3), (4), the geometrical compatibility equation of the shell is written as  
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The stress – strain relationships for the shell are defined by the Hooke law 
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where 
r

σ and θσ  are the normal stress, 
rθσ  is the shear stress at the middle surface of the spherical 

shell in spherical system coordinate. 

The force and moment resultants of the shell are expressed in terms of the stress components 

through the thickness as 
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with ( )i j r= = or ( ),i j θ= = for simplicity denoted 
rr r

N N= , ,N Nθθ θ= ,
rr r

M M= M Mθθ θ= . 

Using Eqs. (4), (6), and (7), the constitutive relations can be given as 
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From the relations one can write 
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Based on the classical shell theory, the nonlinear equilibrium equations of a the shell [9] 
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(14) 

The Eqs. (12), (13) are identically satisfied by introducing a stress function F as 
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                 (15) 

Substituting Eqs. (3), (9), (15) into the Eqs. (5) and substituting Eqs. (3), (10), (15) into Eq. (14) 

leads to 
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The stress function F  should be determined by the substitution of deflection function w  into 

compatibility equation (16) and solving resulting equation. Therefore one should find a transformation to 

lead Eqs. (16), (17) into constant coefficient differential equations. Suppose such a transformation [9] 
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Substituting Eq. (18) into Eqs. (16), (17) and establishing a lot of calculations lead to the 

transformed equations [9] 

4 3 2 3 4 2 4

0 0 0 0 0 0 0

4 3 2 2 2 2 2 4

1

2 2 2 2 2 2
20

2 2 4 4 2 2

1
4 4 4 2 4

1 1
( ) ( ) ( )( );

F F F F F F F

E

r w w w w w w w w

R e e
ς ς

ς ς ς ς θ ς θ θ θ

ς θ ς θ θ ς ς ς θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

         (19) 

4 3 2 3 4 2 4

4 3 2 2 2 2 2 4
( 4 4 4 2 4 )

w w w w w w w
D

ς ς ς ς θ ς θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂
− + − + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
2 4 2 2 2 2

20 0 0 0 0 0
0 02 2 2 2

( 4 4 ) ( 2 )( )
r e F F F F F w w

F F e
R

ς
ς

ς ς θ ς θ ς ς

∂ ∂ ∂ ∂ ∂ ∂ ∂
− + + + − + + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂  

2 22 2
2 20 0 0 0

02
( 2 3 )( ) 2( )( )

F F F Fw w w w
F e e

ς ς

ς ς ς ς θ ς θ θ ς θ θ

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
− + + + + + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

        (20) 



V.T.T. Anh, N.N. Duc / VNU Journal of Science: Mathematics – Physics, Vol. 31, No. 1 (2015) 1-13  

 

6 

2 2
4 4 4 4 2 2

0 1 0 2 02 2
( ) 0.

w w
qr e k wr e k r e

ς ς ς

ς θ

∂ ∂
− + − + =

∂ ∂
 

Eqs. (19) and (20) are the basic equations used to investigate the nonlinear buckling of FGM annular 

spherical shells. These are nonlinear equations in terms of two dependent unknowns ( )w ς and 
0
( )F ς . 

3. Nonlinear mechanical stability analysis and numerical results.  

The nonlinear mechanical and numerical analysis of S-FGM annular spherical shell is analyzed in 

this section. The shell consists of aluminum (metal) and alumina (ceramic) with the following 

properties   
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and Poisson’s ratio is chosen to be 0.3v = . 

3.1. Nonlinear mechanical stability analysis 

The S-FGM annular spherical shell is assumed to be simply supported along the periphery and 

subjected to mechanical loads uniformly distributed on the outer surface and the base edges of the 

shell. Depending on the in-plane behavior at the edge of boundary conditions will be considered in 

case the edges are simply supported and immovable. For this case, the boundary conditions are 
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where
0

N is the fictitious compressive load rendering the immovable edges.  

The boundary conditions (21) can be satisfied when the deflection w  is approximately assumed as 

follows [9, 11, 12] 
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Where W is the maximum amplitude of deflection and ,m n  are the numbers of half waves in 

meridional and circumferential direction, respectively. The form of this approximate solution was 

proposed by Agamirov [12] and it was used by Sofiyev [11] for FGM truncated conical shells. 

Introduction of  Eqs. (22) into Eq. (19) gives 
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Solving this obtained equation with the boundary conditions (21) for the stress function
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and 
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The remaining constants are given in Appendix. 

After substitution Eqs. (22) and (24) in Eq. (20), for simplicity, the left hand side of the last 

obtained equation is denoted by Φ . Applying Galerkin method with the limits of integral is given by 

the formula [9] 

                              

1
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ln
2

1

0 0

sin( )sin( ) 0,

r

r
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we obtain the following equation 
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Where the constants
1
, , 0,1,..7

i
B A i =

 
are given in Appendix. 

Eq. (28) is used to determine the buckling loads and nonlinear equilibrium paths of S-FGM 

annular spherical shell under uniform external pressure. 

The simply supported S-FGM annular spherical shell with freely movable edge is assumed to be 

subjected to external pressure q (in Pascals) uniformly distributed on the outer surface of the shell in 

the absence of temperature conditions. In this case
0

0N =
 
and Eq. (28) reduces to 
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  (29) 
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where, by putting 

4 2

* * *01 1 2

1 0 1 23
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h
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If the S-FGM annular spherical shell does not rest on elastic foundations ( )1 2
0K K= = we received 
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 (30) 

Eq. (30) may be used to find static critical buckling load and trace post-buckling load – deflection 

curves of S-FGM annular spherical shell. It is evident *( )q W  curves originate from the coordinate 

origin. In addition, Eq. (29) indicates that there is no bifurcation-type buckling for pressure loaded 

annular spherical shell and extremum-type buckling only occurs under definite conditions. 

 3.2. Numerical results and discussion 

In this section, it is noted that in all figures /W h denotes the dimensionless maximum deflection of 

the shell. 

Figure 2 examines the dependence of the nonlinear response of FGM annular spherical shells on 

the mode ( , )m n . It is easily recognized that with 1m = , the more increased the value of n  the higher 

increasing of the value of extreme point, corresponding to the higher load capacity of the shells. Note 

that, when m  is even or 3m ≥ , the graphic consists of symmetric curves through the origin of the 

coordinate system and the extreme point does not exist in the load-deflection curves. 
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Fig. 2. Effects of mode ( , )m n  on the nonlinear 

response of S-FGM annular spherical shells. 

Fig. 3. Effects of volume fraction index k  on the 

nonlinear response of the S-FGM annular spherical 

shell. 
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Fig.3. shows the effects of volume fraction index (0,1,2,3,10)k  on the nonlinear response of the 

FGM annular spherical shell subjected to external pressure (mode ( , ) (1,11)m n = ). As can be seen, the 

load–deflection curves become lower when k increased. This is expected because the volume 

percentage of ceramic constituent, which has higher elasticity modulus, is dropped with increasing 

values of k . 
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Fig. 4. Effects of curvature radius-thickness ratio on 

the nonlinear response of the shells under external 

pressure. 

Fig.5. Effects of radius of base-curvature radius ratio 

1 0
/r r  on the nonlinear response of the shells. 

Fig. 4 depicts the effects of curvature radius - thickness ratio /R h  (250, 300, 400, and 500) on the 

nonlinear behavior of the external pressure of the S-FGM annular spherical shells 

(mode ( , ) (1,11)m n = ). From Fig. 4 we can conclude that when the annular spherical shells get thinner - 

corresponding with /R h  getting bigger, the critical buckling loads will get smaller. 

Fig. 5 analyzes the effects of 2 base-curvature radius ratio 
1 0

/r r  on the nonlinear response of the 

shells subjected to uniform external pressure. It is shown that the nonlinear response of the shells is 

very sensitive with change of 
1 0

/r r  ratio characterizing the shallowness of annular spherical shell. 

Specifically, the enhancement of the upper buckling loads and the load carrying capacity in small 

range of deflection as 
1 0

/r r  increases is followed by a very severe snap - through behaviors. In other 

words, in spite of possessing higher limit buckling loads, deeper spherical shells exhibit a very 

unstable response from the post-buckling point of view. Furthermore, in the same effects of base-

curvature radius ratio 
1 0

/r r the load of the nonlinear response of the shells is higher when the 

shallowness of the shell ( H ) is smaller, where H is the distance between two radius 
1 0
,r r , and 

calculated by 2 2 2 2

1 0 0 1
( , )H r r R r R r= − − −  

Effects of the elastic foundations 
1 2

( , )K K on the nonlinear response of S-FGM annular spherical 

shells are shown in Fig 6. Obviously, elastic foundations played positive role on nonlinear static 

response of the S-FGM annular spherical shell: the large
1

K and
2

K coefficients are, the larger loading 



V.T.T. Anh, N.N. Duc / VNU Journal of Science: Mathematics – Physics, Vol. 31, No. 1 (2015) 1-13  

 

10 

capacity of the shells is. It is clear that the elastic foundations can enhance the mechanical loading 

capacity for the S-FGM annular spherical shells.

 

0 1

/ 300, 1,

/ 2, / 30,

( , ) (1,7).

R h k

r R r R

m n

= =

= =

=

0.5
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1

1.5

(0,0)

(10,10)
(10,0)

(5,15)

(5,10)

 

Fig. 6. Effects of the elastic foundations 
1 2

( , )K K on the nonlinear response of S-FGM annular spherical shells. 

4. Conclusion 

The present paper aims to propose an analytical approach to study the problem of nonlinear 

stability analysis of S-FGM thin annular spherical shells with ceramic-metal-ceramic layers on elastic 

foundations under uniform external pressure. Based on the classical shell theory, the equilibrium and 

compatibility equations are derived in terms of the shell deflection and the stress function. This system 

of equations has been transformed into another system of more simple equations. Galerkin method is 

used to get the explicit expression of post-buckling load – deflection curves of the shells. The effects 

of material, geometrical properties, elastic foundations and combination of external pressure on the 

nonlinear buckling and post-buckling of the S-FGM annular spherical shells are analyzed and 

discussed. 
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