VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10

Automated analysis of consensus protocol in specifcation
of multi-agents coordination

Trinh Thanh Binh'*, Truong Ninh Thuan?, Nguyen Viet Ha’

'Haiphong University, 171 Phan Dang Luu, Kien An, Haiphong, Viemam

*VNU University of Engineering and Technology, 144 Xuan Thuy, Hanoi, Vietnam

Received 10 January 2012

Abstract. Formal specification and reasoning techniques in software modelling are needed to
ensure the correctness of the system at the design phase. Event-B is a formal method with support
tools that allows the specifcation and verifcation of reactive systems. In this article, we propose an
approach to specify capabilities of a number of software agents. We also verify whether these
capabilities help the agents to accomplish a task using a support tool of Event-B. In our previous
paper, we have presented about the specifcation and verifcation of sequential protocols. We extend
in this article the one of combination between the sequential and parallel protocols of multi-agents

software.

1. Introduction

Coordinated consensus problems [1] have a
long history of study in computer science and
their solutions have become an important
foundation of reactive systems such as multi-
agent systems. These problems can now be
formally and efficiently analyzed thank to the
development of formal methods in software
specification and verification.

A multi-agent system [2, 3] is a collection
of subsystems in which each subsystem, called
an agent, updates itself in accordance with the
information it gathers from some of the other
agents, i.e from its neighbors. In general, the
neighbors of an agent are subject to change in

* Corresponding author. Tel: 84-988681275.
E-mail: binhtt.di07 @vnu.edu.vn

time which introduces a switching behavior to
the dynamics of the system through
communication links. It has been proved that it
is very important to study and understand the
effect of this varying communication topology
on some common task to be accomplished (i.e
reaching a consensus) by the agents composing
the system.

The B method [4] is a formal software
development method, originally created by J.-
R. Abrial. The B notations are based on the set
theory, generalized substitutions and the first
order logic. Event-B [5] is an evolution of the B
method that is more suitable for developing
large reactive and distributed systems. Software
development in Event-B begins by abstractly
specifying the requirements of the whole
system and then refining them through several

2 T.T. Binh et al. | VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10

steps to reach a description of the system in
such a detail that can be translated into code.
The consistency of each model and the
relationship between an abstract model and its
refinements are obtained by formal proofs.
Rodin platform [5] is the tool supports for
Event-B specification and proof.

In this article, we propose an approach to
build a specification of a multi-agent system
and then to prove the coordinated consensus of
agents in the specification using Event-B. In
our approach, each agent is specified by an
abstract machine which sees its context
machine. The context and abstract machines of
agents are later composed to form general ones
as the whole systems according to the rules of
the protocol consensus algorithms. The support
tools provided by Event-B enable to formally
analyze the coordinated consensus of agent
specifications through the composed machines.
In our previous work [6], we have been
working with sequential protocol, this artcile
extends the previous work to analyse protocols
contained both sequential and concurrent events.

The rest of this paper is organized as
follows. Section 2 presents our main
contribution of using Event- B to specify multi-
agent systems and to prove the consensus of the
coordination of some agents. We also illustrate
in this section the proposed approach by a case
study, the multi-agent system for calculations of
binary numbers. Section 3 discusses related
works. We conclude the paper and give some
future works in Section 4.

2. Our approach of coordinated consensus
analysis using Event-B composition

In multi-agent systems, each agent and their
capabilities is provided to perfom particularly

tasks. These agents can be coordinated to solve
a problem which is impossible or otherwise
difficult for an individual agent or monolithic
system to solve. However, the cooperation of
agents has been lacked the consensus analysis
in specification and design tools. As a result,
we propose an approach to analyse the
cooperation of agents to accomplish a task
using Event-B notation and tools.

Note that, “consensus”’ means to reach an
agreement between agents regarding a certain
quantity of interest that depends on the state of
all agents. A “consensus algorithm” (or
protocol) is an interaction rule that specifies the
way of information exchange between an agent
and all of its neighbors [7]. Before introducing
the approach of coordinated consensus analysis
using Event-B, we give some definitions and
their corollary related to Event-B specification,
they are useful in the analysis process.

Defnition 1: ¢ @{e =<g,a>l [a]_)fu[se}

An iterative event e = <g, a> is called
convergence when the guard g is hold and then
their list of actions a executed until g is not
hold in a finite of execution steps. Note that,
when the guard g of an convergent event is
unsatisfied, proof obligations of deadlock
freeness defined in a model machine will be
unproved. Thus, to prove the convergence of
the model, we have to add a new event e’ = <g',
a’> to the model such that g V g’is always hold
under the execution of a or a".

Corollary 1. If e= <g, a> then Je' = <g’,
a’> such that g A g’ = true

This corollary can be stated that the value of
a convergent iterative event can be obtained by
anew added event.

Proof. Suppose that ¢ = <g, a> is a
convergent event. According to the Definition

T.T. Binh et al. | VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10 3

1, the guard g will be unsatisfied in a finite of
execution steps. Then we can define
additionally a new event ¢’ = <g', a’> in the
machine in order to get results of variables in
event ¢ where g'=—g ,in a simple case.

Defnition 2:

A
E @S(e, =< g,,a,>)|[S(e)]v g, — false}
The interaction of events which conforms to a
sequential protocol execution is convergent
when:

e The order of events is conformed to the
protocol execution,

of the model is violated. We have to add a new
event e’ = <gha> such that

g Vg V..vg, Vvg' hold

Corollary 2. If E=S(e,) then Je’' = <g’, a">
such that vg, v g'=true

When the interaction of events is
convergent, we can obtain the convergent value
by a new added event. The proof of the
Corollary 2 is similarly as the one of the
Corollary 1. In order to analyze the coordinated
consensus of the composition of the agents in a

multi-agent system, we first compose the

e The disjunction of all guards of related Event-B specification of the system. The
events will not be hold in a finite steps of architecture of the specification is depicted in
execution. Figure 1.

The disjunction of all guards of related
events will not be hold, then deadlock freeness

SEes
Addidon mch == Addidgon.cox
vees
/ BitShift mch BitShiftcox \
" \
| _
Tees i

MinltplyDigit mch

-, Yoo
composition Y, | |

MAS mch

L

MultiplyDigit.cte

I

MAS o

Figure 1. Composition of agent machines.

In this specification, the context machines
of different agents will be combined into a
context machine of the system called MAS.ctx,
while the abstract machines of different agents
will be combined into a general abstract
machine called MAS.mch.

Note that composition in Event-B has been
proposed earlier by Poppleton in [8]. His
approach of composition is roughly described
as follows. Let M1 and M2 be two models
which are proposed to be fused. The variables
and events from each model will be combined

4 T.T. Binh et al. | VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10

with the ones from the other model. That is,
they concatenate the variable lists and events,
conjoin those events with common names (in a
manner to be defined) in a new model M. The
variable list v in M1 comprises the list x of
actioned variables and the list y of skipping
variables for each event. Similarly variables list
w in M2 comprise the list z of actioned
variables and the list a of skipping variables for
each event. They define xz = xNz , the common
actioned variables, and ya = yNa, the common
skipping variables. Note that the other
intersecting variable lists yz and xa are both
empty, to enable meaningful composition
definitions [8].

This approach focuses on the composition
of independent events and variables of
machines and on assuring the correctness of
proof in the composition machine. It means
that, the events in systems do not affect results
of the execution after the composition. In
addition to the above, the composition
mechanism in Event-B has to ensure that the
overall behavior of the abstract model is kept
and that the concrete model does not get into
two states:

® Divergence: this situation occurs when
the system behaves chaotically, it happens
whenever some events are aborted.

¢ Deadlock: this situation occurs when no
event is enabled and as a consequence, the
system’s state never change since it happens.

The first constraint (non-divergence),
imposes to exhibit a variant V, which is a well-
founded structure (e.g. N,<), is proved to be
decreased by a wellfounded relation. The
second constraint (deadlock freeness) is proved
by proof obligations which state that the
disjunction of the event guards always hold

under the properties of the constant and the

invariant. The absence of the divergence and
the deadlock can be proved by the support tool
of Event-B. This leads us to the thought of
applying the idea of machine composition to
compose machines of agents and to analyze the
coordinated consensus between agents. In this
composition, the interaction between events
plays an important role in accomplishing a task.

Note that, in order to avoid the ambiguity in
the case that an agent may have many
capabilities, we decompose it to several model
machines, each of them corresponds to one
capability. The decomposition process is
applied to a model machine which specifies an
agent with more than one capabilities [9].
Alternatively, we can also specify each
capability of the agent by a model machine at
the beginning.

Suppose that, in our model, an abstract
machine specifies an agent’s capability, which
is expressed by a quatro-tuple Mi = <v;, Init; ,
ec;, ee; >. where v; is the list of variables, Init; is
the initial event of the agent’s machine i , ec; is
the list of events which completely specify the
agent capability, and eei is the event used to
obtain the result (see the Corollary 1).

Defnition 3. A Mult is a quatro-tuple Mult
=<Ag; Mact; a; I'> where:

* Ag is a fnite set of agents (in a MAS),

* Mact is the set of capabilities possible in

Mult,

e a: Mact — Ag assigns to each capability
of Mact the agent that performs it,

e [" is the execution protocol between
capabilities toaccomplish a task.

Then, let M = <V, Init, ec, ee, eeM> be the
composed machine for the agent capabilities
Mi, i = 1,..,n. Depending on the protocol
execution of agents which contains only

T.T. Binh et al. | VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10 5

sequential events or with parallel events, we
establish the composition machine.

2.1. Sequential protocols

In the case that the protocol contains only
sequential events, without the loss of generality,

| Agent—1:Class

[

we suppose that the execution protocol between
events in sequential protocols of multi-agents
system i the ordering
T @[ecl,ecz,ec3,...,ecn] , visually presented in

1S

Figure 2 using protocol diagram of AUML.

‘ Agent—2:Class

[

& 0

o

Figure 2. Sequential protocol.

The construction of the composition
machine M of Event-B notation has to be

conformed to the following principle:

e V = Uy, the list of variables of the
composition machine contains variables of
agent machines

e ec = Uec;, the composition machine

contains all events of the agent machines
Init,, the Init event of the

composition is defined as the Init event of the
first capability machine in protocol execution.

e Init =

e ee = Uee; where ee; = Init;,, U ee; , to
activate the events of the next capability, a part
of its event [nit is combined to the get result

event of the previous capability.

e eey, 1s the new event added to the model to
get final result of computation process.

After executing the composition, we have to
optimize the MAS model machine and its
context by eliminating some constants and
variables which are redundant or unnecessary.
The principle proposed above is reasonable
because it can make the events executed in the
order of the protocol consensus. The event ec,
is executed first via the definition Init of the
machine, then the next event will be executed
via a part of the definition of the get result event
of the previous event.

2.2. Parallel protocols

In the case that the protocol contains not
only sequential but also concurrent events, we
suppose that the execution protocol between
events of agents I" defined formally as follows:

r ;= scenario
(1) e event

6 T.T. Binh et al. | VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10

(2) | I; e sequence
(3) [Ile parallel

The protocol contains concurrent events in
an agent system may be visually presented in
Figure 3. Note that, in the Event-B model, the
events are fire concurrently if the guards of
these events satisfy an environment condition

Agent—1:Class

|

ec_l

together. The protocol is thus convergent when
each of event must be convergent. As a same
way as sequential scenario, if the execution of
concurrent events are convergent, we also add
an event to the scenario to get results of these
events.

Agent—2:Class

|

ec_2

ec_3

ec 1

ec_nt+l

Figure 3. Parallel protocol.

The construction of the composition
machine M in this case is the merging between
sequential and parallely event protocol. The
sequential part is done in similar manner as the
one presented above. The concurrent events

part are constructed as the following principle:

1. From the previous sequential event,
activate the guard of all executed concurrent
events such that they work at the same time;

2. With each event ee; executed parallely,
we add a get result event ee; (we can do it
because each of this one is convergent);

3. Add an event eep to get the final result of
papallel process, this event will be enabled by
€Cis ;

4. The get result event eep is responsible to
activate the next sequential event in the
protocol.

The convergence of each event and of the
be
automatically proved by the tool support of
Event-B [5].

interaction between events will

2.3. Description of a case study

Supposing that in a multi-agent system, an
organisation contains agents used to calculate
the results of some operations for binary
BitShift, Sum and MultiDigit
agents.Multiplication for binary numbers works
in the same way as for the decimal numbers. In
our multi-agent system, we have three

numbers:

T.T. Binh et al. | VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10 7

capabilities: multiplyWithOneDigit, shiftLeft ,
and addition.

These capabilities respectively belong to the
MultiDigit agent, the BitShift agent, and the
Sum agent. In the BitShift operation, the digits
are shifted left or right. The shiftLeft capability
of the BitShift agent enables digits in a binary

number move a number of bits left by the
operation with the same number of right bits
being filled up by zero. For instance, if we
apply the shift left operator by one position to
the binary number 00011011, we obtain the
number 00110110. The BitShift agent can be
specified by AUML as depicted in Figure 4.

wpgeni HilShf

shifil.cfl, shiflRight
Scapub bty ghifilofl

~cupabkiy e delSighi

It

Uingmneation

Thiz capability mekes e el kils
sy mumber with memShill bies

Calonlaior
iy Mumber, memShift hinery Momber, memShift
Chetpn Chrtpus
I snlo—macicly, sxit—msscty, compuic
. - Tarane b
iy M amaber Sy e
Dhrmcripiaos. Descrpizen

This capslality maken the ahifl rghl o

bizary mumher with nemekifl bits

Figure 4. Bit shift agents specification.

The Sum agent is used to add or subtract
two binary numbers. The input of the Sum
agent are two binary numbers and the output is
a binary number as the result of the operation.
For example:

00011011
00011011
+—

00110110
The capabilility of the MultiDigit agent is to
multiply a binary number by one digit number
(0 or 1). The input is a binary number and a
binary digit, the output is a binary number as
the result. The specification of the case study in
Event-B notation can be found in [10, 6].

3. Related work

In the literatures, there are many papers
proposed to formalize multi-agent systems
using different formal methods in order to
support the formal verification of the system.
Hilaire [7] proposed a general framework for
modelling multi-agent systems based on
Object-Z and statecharts. This framework
focused on rganisational aspects in order to
represent agents and their roles. Similarly,
Regayeg [11] combined Z notations and linear
temporal logic to specify the internal part of
agents and the specification of the
communication protocols between agents. They
proposed general patterns and the use of Z

8 T.T. Binh et al. | VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10

support tools to modelcheck their

specifications.

H. Fadil and J. Koning presented a work
[12] involving the use of classical B to model
agents roles and interactions. The goal of the
paper is to model the interaction between
agents with a formal method that is able to
check and then prove their initial UML
specification. The paper [13] also focused on
the interaction protocol between agents using
Event-B. Some patterns for the B specification
of fault tolerance protocols are proposed in the
case of agent communication.

A. Lanoix [14] proposed an approach to
report their experience with the Even-B
stepwise development of a situated MAS which
study the displacement of vehicles in a
convoy. In the case study, they suppose that
all the vehicles move in a simultaneous
movement using Event-B to ensure a safety
property of the system: no collision must
occur between a vehicle and its
predecessor.

The papers above try to specify protocol
execution between tasks of agents using Z,
classical B, Event- B, etc. but it did not provide
an approach to check if tasks are coordinated
consensus, that our paper proposes. The
coordinated consensus problems in multi-agent
systems have been also considered in [1,15, 16].

R. Carli [1] discussed a work concerned a
group of autonomous mobile agents in order to
analyse a common task, communications
constraints impose limits on the achievable
control performance. Analysing the consensus
or state agreement problem, the authors
characterize the relationship between the
amount of information exchanged by the agents
and the rate of convergence to the agreement.

Another approach to the coordinated
consensus problem of multi-agent systems is
presented in [15]. In this approach, the authors
introduce a characterization of contraction for
bounded convex set. For discrete-time multi-
agent systems, the authors provide an
upperbound on the rate of convergence to a
consensus under some assumptions.

However, these papers focused on analysing
coordinated consensus problems using
mathematical models, this is still impossible to
use support tools to prove the convergence of
tasks.

4. Concluding remarks

Multi-agent systems play an important role
in developing complex or distributed
information systems. As each agent of the
system usually be designed to be autonomous
and does not aware of other agent existences, it
is difficult for developers to ensure the
coordinated task of these agents will be
accomplished.

In this article, we proposed an approach to
specify multi-agent systems and then verify the
consensus property of agents using Event-B. In
our approach, each agent is specified by an
abstract machine which sees its context
machine. A context machine here refers to the
environment of the agents. The interactions
between agents are specified as protocols or
algorithms that modify machine states. The
context and machines of agents are then
composed to general ones as the whole systems
according to the rules of the protocol consensus
algorithms. Then, we can use Event-B tools to
formally analyze the coordinated consensus of
agent specifications through the composed
machines. We have provided the rules for

T.T. Binh et al. | VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10 9

specifying the protocol contained both

sequential and parallel events.

We illustrated our approach by an example
of a binary multiplication system. In this
system, the result of a multiple operation is
accomplished by the collaboration of different
agents. Using Rodin platform, we proved that
the system will reach the state that provide the
result. However, this case study just illustrated
only the specification and verification of
sequential scenarios.

Our approach is based on the proving
ability of Event-B tools so it cannot cope with
large multiagent systems which have a large
number of agents and complex interactions.
Another limitation is that it only works with
simple consensus problems that can be
specified by Event-B. We are working to extend

our approach to check the plan of agents.

Acknowledgments

This work is partly supported by the research project
No. QG.11.32 granted by Vietnam National
University, Hanoi.

References

[1] R Carli et al. “Communication constraints in
coordinated consensus problems”. In: American
Control Conference. IEEE, 2006.

[2] Gerhard Weiss. Multiagent Systems: A Modern
Approach to Distributed Artifcial Intelligence.
The MIT Press, 2000.

[3] Michael Wooldridge. An Introduction to
MultiAgent Systems. John Wiley & Sons, 2002.

[4] J.R. Abrial. The B-Book, Assigning Programs to
Meanings. Cambridge University Press,1996.

[5] http://event-b.org.

[6] Ninh-Thuan Truong, Thanh-Binh Trinh, and
Viet-Ha Nguyen. “Coordinated consensus
analysis of Multi agent systems using Event-B”.

(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

In: SEFM'09: Proceedings of the Formal
Methods and Software Engineering. 1EEE
Computer Society, 2009, pp. 201-209.

V. Hilaire et al. “Formal specification approach
of role dynamics in agent organisations:
Application to the Satisfaction-Altruism Model”.
In: Int. Jour. of Software Engineering and
Knowledge Engineering 17.5 (2007), pp. 615—
641.

Michael Poppleton. “The Composition of Event-
B Models”. In: ABZ '08: Proceedings of the st
international conference on Abstract State
Machines, B and Z. London, UK: Springer-
Verlag, 2008, pp. 209-222.

Michael Butler. “Decomposition Structures for
Event-B”. In: IFM'09: Proceedings of the 7"
International Conference on Integrated Formal
Methods. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 20-38.

T. Binh Trinh. “Verifying Java concurrent
components”. Phd Thesis. Vietnam National
University, Hanoi, 2011.

A. Regayeg, A.H. Kacem, and M. Jmaiel.
“Specification and verification of multi-agent
applications using temporal Z”. In: Intelligent
Agent Technology Conference. IEEE Computer
Society, 2004, pp. 260-266.

H. Fadil and J. Koning. “A formal approach to
model multiagent interactions using the B formal
method”. In: International Symposium on
Advanced Distributed Systems. Vol. 3563.
LNCS. Springer Verlag, 2005, pp. 516-528.

E. Ball and M. Butler. “Event-B patterns for
specifying fault-tolerance in Multi-Agent
interaction”. In: Proceedings of Methods,
Models and Tools for Fault Tolerance. Vol.
5454. LNCS. Springer, 2009.

Arnaud Lanoix. “Event-B Specification of a
Situated Multi-Agent System: Study of a Platoon
of Vehicles”. In: TASE '08: Proceedings of the
2008 2nd IFIP/IEEE International Symposium
on Theoretical Aspects of Software Engineering.
IEEE Computer Society, 2008.

Sezai Emre Tuna and Rodolphe Sepulchre.
“Quantitative convergence analysis of
multiagent systems”. In: 7th IFAC Symposium
on Nonlinear Control Systems, 2007.

R. Olfati-Saber, J. A. Fax, and R. M. Murray.
“Consensus and Cooperation in Networked
Multi-Agent Systems”. In: Proceedings of the
IEEE, 2007, pp. 215-233.

10 T.T. Binh et al. | VNU Journal of Science, Natural Sciences and Technology 28 (2012) 1-10

Phan tich ty dong sy dong thuan trong dic ta su phoi hop
cua tac tu

Trinh Thanh Binh, Truong Ninh Thuén, Nguyén Viét Ha

Truong Pai hoc Hai Phong, 171 Phan Pang Luu, Kién An, Hai Phong, Viét Nam
Truong Pai hoc Cong nghé, PHQGHN, 144 Xudn Thuy, Ha Ngi, Viét Nam

Céc phuong phép dic ta hinh thic va suy luan thudng duoc sir dung nham bao dam tinh ding din
ctia hé thong phan mém tai pha thiét ké. Event-B 1a mot phwong phép hinh thirc duge cung cp sin cic
cong cu hd trg cho phép dic ta va kiém chimg ty dong cdc hé thdng phan ung lai (reactive system).
Trong céc bai bdo trudc chiing toi da d& xuét mot phwong phdp st dung Event-B dé dic ta va ching
minh tg dong su tuong tic (giao thuc tuén ty) gitra cdc tac tir phén mém dé cung nhau thyc hién mot
nhiém vu. Trong bai bdo nay, ching t6i tiép tuc md rong cic két qua dé dic ta va phan tich sy trong
tac gilta cdc tdc tu thong qua sy két hop gilta giao thirc tudn ty va song song.

