
VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

 190

Agent Oriented Software Engineering: Why and How

Lin Padgham*, John Thangarajah

School of Computer Science and Information Technology, RMIT University, Melbourne, Australia,

GPO Box 2476W, Melbourne, VIC 3001, Australia

Received 9 June 2011

Abstract. This paper introduces the concept of agents, and agent systems, and then motivates why

developers may want to use this technology for building complex software systems. It describes a

particular approach to Agent Software Engineering, the Prometheus methodology, and the

associated Prometheus Design Tool. The paper concludes with a discussion of some of the current

trends in Agent Oriented Software Engineering.

1. Introduction
∗∗∗∗

In this paper we discuss agent oriented

software engineering, trying to answer the

question as to why you would use this approach,

and how you would do it. A natural starting

place is then to briefly address the question as

to “what are agents?”

Software agents are seen by many as a

natural evolution from objects, providing an

additional level of abstraction and

encapsulation (e.g. [1]). A well accepted

definition of an agent is from [2], which in turn

is adapted from [3]:

“An agent is a computer system that is

situated in some environment, and that is

capable of autonomous action in this

environment in order to meet its design

objectives.”

∗

 Corresponding author. Tel.: 61-3-9925-3214.

 E-mail: lin.padgham@rmit.edu.au

Wooldridge distinguishes between an

agent and an intelligent agent which is further

required to be reactive, proactive, and social [2,

page 23].

Two basic properties of software agents are

that they are autonomous and that they are

situated in an environment. The first property,

being autonomous, means that agents are

independent and make their own decisions. This

is one of the properties that distinguishes agents

from objects. When we consider a system

consisting of a number of agents, then a

consequence of the agents being autonomous is

that the system tends to be decentralised.

Agent technology tends to be used to build

systems where the environment is complex and

challenging. In particular, in addition to being

complex, environments may be dynamic - that

is the agent cannot assume that the environment

will remain static while it is trying to achieve a

goal; they may be unpredictable in that it is not

possible to fully predict the future states of the

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

191

environment; and they may be unreliable in that

the actions that an agent can perform may fail

for reasons that are beyond an agent's control.

Because agents are situated in dynamic

environments, they must be reactive to changes

in those environments, adjusting their plans

according to environmental changes. Agents are

also proactive in that they pursue their own

goals. Many agent platforms provide

mechanisms to ensure that the agent's behaviour

is robust with respect to failures and changing

conditions. When the agent behaviour is

programmed in terms of high level concepts

such as goals, the execution infrastructure

ensures that the agent attempts alternative ways

to achieve its goals, if initial methods fail. In

order to ensure that agents are robust and

flexible they are typically programmed with a

number of plans for achieving a given goal. A

key issue is balancing reactiveness and

proactiveness. An agent's plans and actions

should be influenced by environmental

changes, and if the agent does not pay sufficient

attention to this it may well waste time trying to

do things that are either no longer relevant, or

no longer possible. However the agent should

maintain a focus on its goals, and the

achievement of these, and not simply react to its

environment. The social requirement on agents

means they need to interact with other agents,

and these interactions are typically framed in

terms of conversation protocols: patterns of

interaction around a particular (goal-oriented)

process.

Key properties of an intelligent agent are

then the following:

Situated - exists in an environment

Autonomous - independent, not controlled

externally

Reactive - responds (in a timely manner!)

to changes in its environment Proactive -

persistently pursues goals

Flexible - has multiple ways of achieving

goals Robust - recovers from failure

Social - interacts with other agents

Discussion of agents and agent systems

often distinguishes between weak and strong

agency. Strong agency requires that the agents

are modeled in terms of mental attitudes such as

beliefs, goals, intentions, plans, commitments,

and so on. Perhaps the best known such model

is the BDI (Beliefs, Desires, Intentions) model

which has its origins in the philosophical work

of Bratman [4], but which now has a solid

computational body of work encompassing

theory, programming languages and platforms,

and applications. In these systems agents

typically have a collection of plans, where each

plan is a prescription of steps to achieve a

particular task or goal, and is triggered by an

event which may arise from the environment,

from another agent or from within the same

agent's plans. Typically an agent has multiple

plans to handle a particular event, each of

which are applicable in different situations. An

agent has a set of beliefs that represent the

agent's knowledge about the state of the world

and its own internal state.

2. Why are Agents Useful?

Agents, like any other technology, are not

magic. Nor do they solve all problems in

developing software systems. However they are

an approach to structuring and developing

software that offers certain benefits, and that is

very well suited to certain types of applications.

One important aspect of agent systems is that

they are distributed and (relatively) decoupled.

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

192

This is advantageous for design and

development of large complex systems, as well

as for the ongoing evolution of such. Jennings

also argues that agents are “well suited for

developing complex distributed systems” [5]

because of the abstraction they provide and the

decomposition of complex “nearly-

decomposable” systems.

The popular BDI agent paradigm [6] is also

very powerful in terms of the flexibility it can

provide, in a very modular and easily extensible

manner. Each goal will in general have some

number of alternative plans that can be used to

achieve it. A high level goal will have abstract

plans, where the plan steps are further sub-

goals, which themselves will have alternative

plans. Choices are then made dynamically as to

how to achieve each sub-goal. If we take a

single goal, and imagine that we have two

different abstract plans for achieving that goal,

where each plan consists of four subgoals, and

then repeat that structure to a depth of three, we

will have 146 short plans (4 subgoals each).

However we will have over two million ways to

achieve the top level goal!!! Because each plan

is short and specific, it is relatively easy to add

new plans to provide new ways of achieving

particular (sub) goals.

Because of the level of abstraction these

systems are also faster and simpler to build than

traditional systems (once the initial overhead of

a new paradigm is overcome). Benfield et. al.

[7] have documented a range of benefits of

using agent technology in large scale

commercial settings. The four major benefits

they outlined were:

1. Speed to market

2. Increased productivity

3. Agility in responding to

changing/growing requirements

4. Understandability of design

For many business systems it is critical to

get the product out the door fast, to establish a

niche, possibly then extending the system later.

Benfield claims that a number of projects were

awarded to their agent-oriented company,

simply because they were able to deliver the

system faster.

Benfield [7] reports a study in a large

logistics company, where they used function

point analysis to compare a number of agent

based projects, with non-agent based java

projects, in order to determine whether to move

towards more agent oriented systems.

Analysing six agent applications with a total of

7,356 function points and ten person-years of

development time, the average productivity on

the agent applications was 2.11 function points

per day, whereas the average in the company

for all other java based projects was 0.45

function points/day. This equates to a 368%

improvement. The size of the agent projects

ranged from 304 function points to 3,850

function points, while the level of gain ranged

from 273% to 513%. This is obviously quite

impressive!

Benfield also notes that the largest agent

project examined in this study, started as an

application with about 350+ function points.

Once the benefits were seen by the customer,

the requirements quickly increased in size and

complexity, to the 3,850 function point system.

The BDI agent model scales easily, and it is

straightforward to implement an initial “bare

bones” system, and then gradually increase the

functionality. It is also the case that the

building blocks of agent systems are relatively

easily understood by clients and users.

Consequently the conceptual modeling of the

system that is used for requirements

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

193

specification, and discussion with clients, is

quite close to the concrete design which is then

mapped into code.

Although agent systems are still not widely

used in industry, there are a number of very

successful applications of agent technology.

Because of the need for autonomy, NASA is

one of the leading users of agent technology.

For example Remote Agent [8], in May 1999,

was in control of NASA's Deep Space 1 for two

days, over 96,500,000 kilometres from the

Earth. Other application areas where software

agents can provide benefits include Intelligent

Assistants [9], Electronic Commerce [10],

Manufacturing [11], and Business process

modeling [12, 13]. In fact, almost any complex

application can benefit from agent technology,

although some application characteristics lead

to greater benefit from agents than others. In

particular complex applications, in

unpredictable, changing environments, are

where agent systems are particularly useful.

3. Agent Oriented Software Engineering

Whilst traditional software engineering

techniques such as Object Oriented modeling

can be used to develop agent systems, more

specialised techniques that are tailored for agent

systems are becoming increasingly popular for

developing such systems. These techniques

include methodologies and tools that support

the complete software development cycle and

are referred to as Agent Oriented Software

Engineering (AOSE).

AOSE techniques define abstract models in

terms of agent concepts (such as agents, goals,

plans, tasks, events and communication

protocols, rather than the O-O concepts of

classes and methods), though an Agent System

design will typically also include O-O aspects.

These concepts are considered by many to be a

more natural means of modeling complex

systems. An agent based system is decomposed

into multiple, interacting, autonomous agents

that have their own objectives to achieve as

well as system level objectives that are jointly

achieved. Whilst the models available vary

between various AOSE methodologies, at an

abstract level they all provide means for this

system decomposition, objective specification,

and for specifying the interaction between the

agents.

There have been many AOSE

methodologies proposed over the years (see

[14, 15]). We briefly mention some of them

below:

The GAIA methodology [16, 17] is

(arguably) the earliest methodology to gain

recognition. It focuses on identification of

roles, and the permissions and responsibilities

associated with those roles, as well as the

protocols they engage in. The MESSAGE [18]

methodology abstracts away from specific

agent models and identify generic elements that

are expressed as meta-models. The INGENIAS

methodology [19] extends this work. SADDE

[20] is a methodology tailored for building

large scale multi-agents that form societies of

interacting agents, such as electronic auctions.

PASSI [21] specifies a process for

developing agent based systems using UML

notation. O-MaSE (previously MaSE)[22] also

adapts object oriented techniques and models to

the agent paradigm.

The Tropos methodology [23] adopts a

requirements driven approach, building on goal

oriented approaches for domain and

requirements analysis and adapting their

analysis methods to the design of agent-based

systems.

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

194

The Prometheus methodology [24] provides

models for each stage of the design process and

detailed techniques for developing these

models. The methodology is complete in that it

covers all aspects of design in detail. We will

introduce the Prometheus methodology in

Section 4, illustrating how an agent system may

be developed.

For a methodology to be useful a graphical

tool that follows the methodology is essential.

To this end, Tropos, O-MaSE, INGENIAS and

Prometheus are supported by TAOM4E
1
,

agentTool III
2
, IDK

3
 and PDT

4
, respectively.

SEAGENT
5
 is also a graphical tool for building

multi agent systems that follows a Goal-

Oriented approach.

4. The Prometheus Methodology and Design

Tool

The Prometheus methodology has been

developed within the RMIT agents group, in

collaboration with Agent Oriented Software,

over a period of more than ten years. It is based

on experience with companies building agent

systems, and the difficulties they experience

1
 http://se.fbk.eu/en/tools/

2
 http://agenttool.cis.ksu.edu/

3
 http://grasia.fdi.ucm.es/ingenias

4
 http://www.cs.rmit.edu.au/agents/pdt/

5
 http://seagent.ege.edu.tr/

with the paradigm, as well as experiences with

computer science and software engineering

students. An integral part of Prometheus is

PDT, the Prometheus Design Tool, which

guides and assists a developer in designing and

modelling an agent system. PDT also produces

skeleton code, based on the design model, and

supports iteration between design and coding

activities. It also supports automated testing
6

based on the design model.

PDT has three main kinds of modelling

entities:

- structural graphical diagrams,

- process descriptions,

- detailed descriptor forms.

One of the features of PDT is the way in

which it ensures and maintains consistency

between different views of the underlying

system model being developed. This is

extremely important in a large system, where it

is virtually impossible to manually check and

maintain such consistency. We describe some

of the modelling entities, and then follow this

with a description of the overall design process

using Prometheus.

6
 Currently only unit testing is developed.

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

195

Figure 1. Analysis Overview Diagram.

4.1. Structural Graphical Diagrams

The graphical diagrams of the system

structure are the core of a system design done

using PDT and Prometheus. These diagrams

contain the basic modelling entities of actors,

agents, goals, plans, events/messages and

protocols. The two initial key diagrams are

what we call the “Analysis Overview Diagram”

and the “Goal Hiererachy”.

An example Analysis Overview diagram

from a simplified version of a meteorological

warning application for airports, which we

built, is shown in figure 1. The function of this

diagram is to identify the actors (people or other

systems) which will interact with the system

under development and the scenarios around

which the interaction will happen. We then

identify the input to each scenario from the

environment or actors, and the output produced

by the system from each scenario. Input to the

system we call “percepts” and output we call

“actions”, in line with the standard view of

agents as being situated within an environment,

receiving percepts and producing actions.

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

196

Figure 2. Goal Overview Diagram.

In figure 1 we see three actors: an airport

sensor, a forecaster and a user. The two main

scenarios are to alert the user (regarding

meteorological warnings), and to obtain

(meteorological) data. A third scenario is for the

user to subscribe to warnings of particular types

and at particular locations. We see in this figure

also the incoming percepts of data and

subscription, as well as the outgoing actions to

show a warning, request data, and subscribe to

input from the external systems.

An example goal hierarchy diagram is

shown in figure 2, where the top level goals of

Alert User, Obtain Data and Subscribe User are

all propagated from the scenarios specified in

the Analysis Overview diagram. These are then

broken down into subgoals that are either

smaller pieces of the parent goal (AND) or are

alternative ways to achieve the parent goal

(OR).

The key diagram of the system architecture

is the System Overview diagram, showing

agents, their interface to the environment via

percepts and actions, and their interface to each

other via protocols. This diagram will also

show any data structures shared between

agents, though we usually try to avoid this. In

figure 3 we see the system overview diagram

for our meteorological application. This

diagram is produced almost entirely

automatically, from information obtained in

various steps of the design process. After

developing the Analysis Overview and Goal

Hierarchy, goals, percepts and actions are

grouped into roles, and these are in turn

grouped to form agents. This then provides the

information to allow automated placement of

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

197

agents and their interfaces into the System

Overview diagram. Protocols are defined as

part of the process definition and this then

allows them also to be automatically inserted

and appropriately connected.

Figure 3. System Overview Diagram.

In this application we see three agent types:

a Forecaster Agent which packages and

manages forecast data, the Airport Agent which

manages information and warnings regarding a

particular airport, and a GUI Agent which

accepts subscriptions from a user and displays

warnings from airports of interest to that user.

The agents all communicate with each other

within the basic Warnings Protocol of the

system, which is shown in figure 6.

The information from the System Overview

Diagram is then propagated into the interface of

what we call the Agent Overview diagram

which has messages (extracted from the

protocols), percepts and actions coming into

and going out from the agent. The internals of

the agent are then shown in terms of plans and

capabilities, where capabilities are essentially

groupings of plans, messages and data to allow

for modularity in design and presentation. The

Capability Overview diagram is similar in form

to the Agent Overview, and capabilities can be

nested. Figures 4 and 5 show an Agent

Overview and Capability Overview respectively.

4.2. Process Descriptions

There are two types of process descriptions

supported by PDT. These are Scenarios and

Protocols. The Prometheus methodology also

uses Process diagrams for describing the

process undertaken by an individual agent, with

respect to a particular task. If the task is a multi

agent task, then the internal process will reflect

also the incoming and outgoing messages

associated with the relevant protocol.

The scenario description outlines a typical

way that the scenario might play out, with a

focus on percepts, actions and goals as steps in

the scenario. A sub-scenario can also be a step.

It's purpose is to sketch out how things are exp

ected to play out within the system, and to

initiate thinking about data, goals, roles, etc. It

then also provides a basis for developing

protocols.

Protocols utilise the widely used AUML

diagrams, that are defined in PDT using a

simple textual format but displayed

diagrammatically as AUML diagrams, as in

figure 6. This shows the main protocol for the

meteorology alerting system, which consists of

collecting data, and generating warnings. We

have extended AUML to show input and output

in relation to the protocol (which may involve

specific actors). We have found that this

increases the understandability and usefulness

of the protocol specifications.

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

198

Figure 4. Agent Overview Diagram.

4.3. Detailed Descriptor Forms

The final type of modelling entity in

Prometheus and PDT is the Detailed Descriptor

Form. These exist for all the types of entity in

the system. Much of the information is

collected automatically from the structural

diagrams, or process specifications, but the

descriptor allows all relevant information about

an entity to be viewed in the one place. The

descriptor form also prompts the designer to

consider and document particular design

information such as the cardinality of a

particular type of agent, initialisation or demise

processes for an agent type, whether an event is

always expected to have an applicable plan

available, and so on.

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

199

Figure 5. Capability Overview Diagram.

Some of this information is structured (and

therefore machine readable, and usable for such

things as code generation, testing or debugging)

whilst other is just free text and is simply a way

of guiding and prompting the developer to

consider and to document particular decisions.

4.4. Phases of the Prometheus Methodology

The Prometheus methodology includes the

usual phases of system specification, high level

or architectural design, detailed design,

implementation, debugging, testing and

maintenance. These are used iteratively, with

more specification and design early on, and

more implementation, testing, debugging at

later stages. PDT does not currently support

integrated debugging or maintenance, although

we have research work in both these areas.

In the system specification phase the

Analysis Overview and Goal Hierarchy as

described earlier are developed. Goals, with

percepts and actions are grouped into roles, and

necessary data is initially conceptualised.

Scenario details are also developed during this

phase, usually in parallel with development of

the goal hierarchy.

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

200

Figure 6. Example Protocol in AUML.

During the architectural design the agent

types within the system are identified, based on

groupings of the roles identified.

Communication between the agents is then

specified in terms of protocols, and the

individual message types needed at this level

are defined.

At detailed design the internals of each of

the agent types is developed. Initially this is in

terms of capabilities, or modules encapsulating

related behaviour. Finally the individual plans

are specified, and connected together by

subgoal events (or internal messages) to

provide the mechanisms by which the agents

can achieve the goals they are designed to

accomplish within the overall system.

Code generation is based on the models of

the architectural and detailed design. PDT

supports iteration between design, with

automated generation of skeleton code, and

manual augmenting of code with details such as

plan body computations. Automated unit testing

is based on the models of the detailed design

phase and requires that skeleton code is

generated using PDT.

5. Trends in AOSE

In the past ten years a substantial number of

methodologies for designing and building agent

systems have been developed (e.g. [14, 15]) and

published. A number of these, such as O-MASE

[22], Tropos [23], PASSI [21], as well as

Prometheus, have quite well developed toolkits.

While each of the methodologies has their own

strengths and own characteristics, there is

actually quite a substantial common core in

some of the most well used and well developed

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

201

methodologies. This can be seen in the paper by

DeLoach et. al. which compares the toolkits for

Tropos, O-MaSE and Prometheus and their use

in designing a conference management system

[25].
7

As is shown in that paper, although

notations and models differ, there is substantial

similarity in the concepts used, and even in the

particular models developed. There has also

been some work done to agree on notation and

a paper describing a notation agreed between

the developers of PASSI, O-MaSE and

Prometheus is described in [27]. At least PDT

and AgentTool (the O-MaSE toolkit) are in the

process of an upgrade incorporating the new

notation.

In general, following a proliferation of

methodologies, there is now emerging some

substantial consensus on the design entities, and

the basic processes associated with designing

an agent based system. As the basic design

processes of specification, architectural analysis

and detailed design are becoming more

established, and in many ways converging,

more attention is being paid to further aspects

such as testing, debugging, maintenance,

addition of concepts such as organisations and

teams, and integration with Object-Oriented and

other standard design environments.

There is also currently a renewed interest in

standards for agents. In 1996 FIPA

(Foundation for Intelligent Physical Agents)

was formed as a body for working on agent

standards to allow collaboration between

different groups in an open agent environment.

Substantial work was done in the late 1990's to

produce a standard Agent Communication

language (ACL) framework, as well as

specifications for agent platforms that would

7
 Similar material though with fewer explicit

comparisons can be found in [26]

allow heterogeneous agents on different

platforms to communicate and collaborate.

Following the rise of web services (which are

seen by some as a simplified form of agents in

an internet environment), there has been a need

to revise agent standards to incorporate and

complement web service standards. During the

early to mid 2000's there was relatively little

work on agent standards as the community

either used the existing standards or explored

the relationships between agents and web

services. In 2005 the FIPA standards body

voted to become one of the IEEE standards

committees, and this body has been gradually

growing. This year the Object management

Group (OMG) has put out a Request For

Proposals (RFP) for Agent and Event standards,

and is working on these together with FIPA.

This activity may well see new standards

emerging in the near future, which may have

some impact on the Agent Software

Engineering tools becoming available.

At least as important as official standards

are defacto standards that emerge from within

the community. Eclipse as an IDE is one such

defacto standard, and its emergence is reflected

in the fact that many of the Agent development

tools are now either already integrated into

Eclipse, or are in the process of being fully

integrated with Eclipse.

6. Conclusion

 In this paper we have presented the notion

of Agent Systems, and some motivation to use

this technology for its power, modularity and

efficiency in building complex systems. We

have argued that developing agent systems

requires a specialised design methodology in

order to make effective use of the paradigm.

We have described Prometheus and the

associated Prometheus Design Tool, PDT,

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

202

which is the approach developed within our

group over a period of more than ten years, in

collaboration with industry specialists, and with

much feedback from both students and industry

users.

We note that following a period of

evolution of a number of agent oriented design

methodologies, there now appears to be a

period of some emergent convergence and

collaboration. At the same time there is a

renewed standardisation effort which can be

expected to lead to results within the next year

or two. As there is convergence on core areas,

there is also increasing research into design

aspects such as teams and organisations, and

additional aspects of the software lifecycle such

as testing, maintenance and debugging.

Agent Oriented Software Engineering is a

well established sub-field with a specialised

journal
8
, a longstanding workshop series

published by LNCS, and special tracks at both

Software Engineering and Agents conferences.

It can (perhaps) be expected that over time it

will become more and more a standard part of

software engineering for complex dynamic

systems.

Acknowledgements

There are many people whose input of

various kinds must be acknowledged in this

work. Firstly we acknowledge the Australian

Research Council, who have supported this

work under grants CO0106934 and LP0453486,

from 2001 to 2007, and Agent Oriented

Software who have been our Industry Partner

on these grants, and who we have worked with

extensively over many years. Secondly we

acknowledge Michael Winikoff, who has been

a constant part of the RMIT AOSE team from

8
 http://www.inderscience.com/IJAOSE

2001 until 2008. Most of the members of the

RMIT Agents group, postgraduate students of

this group, and many undergraduate or Masters

coursework students have contributed in

various ways to Prometheus and PDT. A few

deserve a particular mention for their work on

PDT: Anna Edberg and Christian Andersson

implemented the initial version of PDT during a

working holiday in Australia, visiting from

Linköping, Sweden; Shankar Srikantiah, Ian

Mathieson and Jimmy Sun have all contributed

substantially to subsequent versions of PDT;

Dave Scerri developed the example design and

system used in this paper. We are grateful to all

the people, named and unnamed who have

contributed in many different ways to this

work.

References

[1] J.J. Odell, Objects and agents compared, Journal

of Object Technology 1 (2002) 41-53

[2] M. Wooldridge, An Introduction to MultiAgent

Systems. John Wiley & Sons (Chichester,

England) (2002) ISBN 0 47149691X,

http://www.csc.liv.ac.uk/~mjw/pubs/imas/.

[3] M. Wooldridge, N.R. Jennings, Intelligent

agents: Theory and practice. Knowledge

Engineering Review 10 (1995)

[4] M.E. Bratman, Intentions, Plans, and Practical

Reason. Harvard University Press, Cambridge,

MA (1987)

[5] N.R. Jennings, An agent-based approach for

building complex software systems.

Communications of the ACM 44 (2001) 35-41

[6] M.E. Bratman, D.J. Israel, M.E. Pollack, Plans

and resource-bounded practical reasoning.

Computational Intelligence 4 (1988) 349-355.

[7] S.S. Benfield, J. Hendrickson, J., Galanti, D.:

Making a strong business case for multiagent

technology. In: AAMAS '06: Proceedings of the

fifth international joint conference on

Autonomous agents and multiagent systems,

New York, NY, USA, ACM (2006) 10-15

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

203

[8] N. Muscettola, P.P. Nayak, B. Pell, B. Williams,

Remote agent: To boldly go where no ai system

has gone before. Artificial Intelligence 103

(1998) 5-48

[9] P. Maes, Agents that reduce work and

information overload, Communications of the

ACM 37 (1994) 31-40

[10] M. Luck, P. McBurney, C. Preist,: Agent

Technology: Enabling Next Generation

Computing (A Roadmap for Agent Based

Computing). AgentLink (2003) ISBN 0854

327886

[11] W. Shen, D. Norrie,: Agent-based systems for

intelligent manufacturing: A state-of-the-art

survey. Knowledge and Information Systems,

an International Journal 1 (1999) 129-156

Extended version available online at

http://imsg.enme.ucalgary.ca/publication/abm.ht

m

[12] N.R. Jennings, P. Faratin, T.J. Norman, P.

O'Brien, B. Odgers, Autonomous agents

for business process management. International

Journal of Applied Artificial Intelligence 14

(2000) 145-189

[13] N.R. Jennings, P. Faratin, T.J. Norman, P.

O'Brien, B. Odgers, J.L. Alty, Implementing a

business process management system using

ADEPT: A real-world case study. International

Journal of Applied Artificial Intelligence 14

(2000) 421- 465

[14] C. Iglesias, M. Garijo, J. Gonz ´alez, A survey

of agent-oriented methodologies. In M ¨uller, J.,

Singh, M.P., Rao, A.S., eds.: Proceedings of the

5th International Workshop on Intelligent Agents

V : Agent Theories, Architectures, and

Languages (ATAL-98), Springer-Verlag:

Heidelberg, Germany (1999) 317-330

[15] F. Bergenti, M.P. Gleizes, F. Zambonelli, eds.:

Methodologies and Software Engineering for

Agent Systems. Kluwer Academic Publishing

(New York) (2004)

[16] M. Wooldridge, N. Jennings, D. Kinny, The

Gaia methodology for agent-oriented analysis

and design. Autonomous Agents and Multi-

Agent Systems 3 (2000)

[17] F. Zambonelli, N. Jennings, M. Wooldridge,

Developing multiagent systems: the gaia

methodology. ACM Transactions on Software

Engineering and Methodology 12 (2003)

[18] W. Coulier, F. Garijo, J. Gomez, J. Pavon, P.

Kearney, P. Massonet,: MESSAGE: a

methodology for the development of agent-based

applications. [15] chapter 9

[19] J. Pavón, Jorge: Agent oriented software

engineering with INGENIAS. In Marik, V., M

¨uller, J., Pechoucek, M., eds.: Multi-Agent

Systems and Applications III, volume 2691 of

LNCS, Springer Verlag (2003) 394-403

[20] C. Sierra, J. Sabater, J. Augusti, P. Garcia,:

SADDE: Social agents design driven by

equations. [15] chapter 10

[21] M. Cossentino, C. Potts, A CASE tool supported

methodology for the design of multi-agent

systems. In: Proceedings of the International

Conference on Software Engineering Research

and Practice (SERP'02), Las Vegas (20 02)

Available from http://mozart.csai.unipa.it/passi/.

[22] S.A. DeLoach, Analysis and design using MaSE

and agentTool. In: Proceedings of the 12th

Midwest Artificial Intelligence and Cognitive

Science Conference (MAICS 2001). (2001)

[23] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,

J. Mylopoulos,: Tropos: An agent-oriented

software development methodology.

Autonomous Agents and Multi Agent

Systems 8(3) (2004) 203-236

[24] L. Padgham, M. Winikoff, Developing Intelligent

Agent Systems: A Practical Guide. John Wiley

and Sons (2004) ISBN 0-470-86120-7

[25] S.A. DeLoach, L. Padgham, A. Perini, A. Susi,

J. Thangarajah, Using Three AOSE Toolkits to

Develop a Sample Design. The International

Journal of Agent Oriented Software Engineering

(2009) To appear

[26] M. Luck, L. Padgham, eds.: Agent Oriented

Software Engineering VIII (AOSE'07). Springer,

LNCS (2008)

[27] L. Padgham, M. Winikoff, S. DeLoach,

Cossentino, M. LNCS. In: A Unified Graphical

Notation for AOSE. Springer-Verlag (2009)

L. Padgham, J. Thangarajah / VNU Journal of Science, Natural Sciences and Technology 27 (2011) 190-204

204

Công nghệ phần mềm hướng tác tử: Vì sao và làm thế nào?

Lin Padgham, John Thangarajah

Đại học Công nghệ Hoàng gia Melbourne, Australia,

GPO Box 2476W, Melbourne, VIC 3001, Australia

Bài báo này giới thiệu các khái niệm về tác tử và các hệ tác tử, và sau đó đưa ra những thuyết minh

nhằm thúc đẩy việc sử dụng công nghệ này để xây dựng những hệ thống phần mềm phức tạp. Bài báo

mô tả một cách tiếp cận cụ thể đối với Công nghệ phần mềm hướng tác tử - phương pháp Prometheus,

và công cụ thiết kế Prometheus đi kèm. Bài báo cũng thảo luận về một số hướng nghiên cứu hiện tại
trong Công nghệ phần mềm hướng tác tử.

