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ON MODULES HAVING p/(M) <0

Nguyen Thai Hoa
Faculty of Mathematics, Pedagogical Institute of Quynhon

I. Introduction

[et (A.m) be a commutative Noetherian local ring and M be a finitely generated
A-module with dim M d. We denote (&) the submodule of M defined by

Qu(z) = | ({2t it Y™ val - 23),

n>0

where r  (zy....,24) is a system of parameters on M (for short s.0.p). We consider the
difference

Jap(n) = ny o nge(z M) — £4(M/Qu(z(n)))

as a function of n, where z(n) = (2]*,...,z}%) and n = (ny,....,ng) is a d-tuple of posi-

tive integers. It is known by [5] that £4(M /Qa(z(n))) is just the length of generalized
fractions in [12]. Therefore we can recall Question 1.2 of [12] as follows: is Jy (n) a
polynomial for enough large n 7 We do not know the complete answer to this guestion at
the time of writing. But as mentioned above for the function Jy .(n), the authors in [11],
|6] and [4] have shown that the least degree of all polynomials of n bounding above the
function Jys . (n) is independent of the choice of z. In 6], this invariant for the module
Mis denoted by pf(M). The aim of this paper is to study some properties of modules
having pf(M) <.

)

[n Section 2 we will give a characterization of modules with pf(AM) < (). In Section
3, we will give some relations between the invariant pf(M) with Cohen-Macaulay filtered
modules (for short CMF modules) which are defined in [15|. The last section is devoted
to study some properties of modules having pf(M) -~ —oc.

II. A characterization of modules with pf(M) < 0

Let (A,m) be a commutative Noetherian local ring and a finitely generated with
dimM ~d>1 Letz - (x1,..,24) be a system of parameters on M and n - (ny.....ng)
a d-tuple of positive integers. We set

Qum{z) U ((.r:” B J:;I' ]).-'L-I vah e -rﬁt)-

t>0

and x(n) - (x)',....z}*). By [5: 2.3| and [11]. [6], we denote

Iara(m) — ny-onge(z; M) = €(M/Qu(2(n)).
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For simplicity, we write Jag (n)  Jy () whenny oo ny 1. The difference Jyy ()
which is non-negative by 6], can be considered as a function of 1 and it is bounded above
by the polynomial ny -« ng Jy ().

Theorem 2.1. (see [11; 1.1], [6; 3.2]). The least degree of all polynomials of n bounding
above the function Jyr (1) s independent of the choice of .

Remark 2.2. (see |6]) The numerical invariant of M by Theorem 2.1 is denoted by
nf(AM). For convenience, we stipulate that the degree of the zero-polynomial is —oc. The
[ollowing results on pf(M) have been proved in [11].

i) Let M be the m-adic completion of M. Then

pfa(M) pfA(f\-f/!-!:i(.-’W)) = pfa(M) pfﬂf,a M
1) Let o be an s.o.p on M with dim(0: 2;) <d —1. Then

pf(M/x\M) < pf(M)<pf(M/x; M) + 1.

Theorem 2.3. With the notations as above. Then, pf(M) < 0 if and only if there exrist
v constant K such that Jy .(n) < K for every z on M and for all n — (ny,...,ng).
Proof. (<«): It is clearly by Theorem 2.1.
'=+): Assume that pf(M) < 0. By Remark 2.2.(i), we have pfa(M) = pfa(M/HL(M))

pf 4/ Aén| M}(M ). Therefore we may &ssume without any loss of generality that

Anng(M) = 0 and depth M > 0. Let £ = (x;,...,74) be an s.o.p on M, then there
s a constant K (z) such that Jy (n) < K(z) for all n. Assume that y — (y1,..., y4) is any
.o.pon M. By [16; 8.2.5], there exist an s.0.p z = (21,...,24) on M and positive integers
1., Tq such that

(2" oy L YR C A28, 858 o B VA G i (B 2g) A
C 21y 2d=1,Ua)AC - C (21,42, W) A C (01 9a) A

3y |1 4.2], we have Ja(y) < Jumo(r) € K(z) where r = (r,...,7q) as required. 0

b

In Conjecture 1 of [8], Hochster has given the monomial conjecture for the case
W A such that, for every system of parameters z - (xy,...,x4) of A, it holds

oy 25 (et vl A

or all { > 0. Hochster proved in (8] that this monomial conjecture is true for hight powers
f systemns of parameters. He also gave an example to show that the monomial conjecture
s not true for modules. However, the authors in [4| said that a system of parameters
© = (xy,...,r4) on M satisfies the condition of the monomial conjecture (MC) if

b -xgM @ (2. M

or all t > 0. Clearly, z satisfies the condition of the monomial conjecture if and only

[Qulx) / M ie. P(M /QM(Q_'I)) > (). By the counterexample of Hochster mentioned
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above, we can not show in general that every system of parameter of M satisfies the
condition (MC). By [4; 3.3]. we have a uniform bound for high powers of all systems
of parameter of M satisfving the condition (MC'). The following result is an immediate
consequence of Theorem 2.3.

Corollary 2.4. With the notations as above. Assume that pf(M) < 0. Then there exist
a constant N such that for every s.opx — (ry,....rq) on M, x(n) satisfies the condition
of the monomaal conyecture for all ny,...,ng 2 N,

Proof. Since pf(M) < 0, by Theorem 2.3 we get a constant K such that Jy (1) < K for
every s.o.p ron M and for all n. Set N K { 1. Suppose that there exist positve integers
my,ang > N osuch that £4(M/Qar(2(n))) 0. It follows that ny---nge(a; M) < K.
We have the contradiction. The proof is complete. O

ITI. Cohen-Macaulay filtered modules

First of all we need some notations which have been introduced in |[15] as follows.

Let M be a finitely generated A-module with dimq M - d > 1. For an integer
0 <1 <d, let M, denote the largest submodule of M such that dimig M; < i. Because
M is a Noetherian A-module, the submodules M, of M are well-defined. Moreover, it
follows that M,_, C M, for all 1 <i < d. The increasing filtration M -~ {M,}y<,<q of
submodules of M is called the dimension filtration of M (see [15; 2.1]). A finitely generated
A-maodule M is called a Cohen-Macaulay filtered module (CMFE module), whenever M,
M,/ M,_; is either zero or an i-dimensional Cohen-Macaulay module for all 1 </ < d. An
sopx - (xy,...,xq) on M is called a distinguished system of parameters of M provided
(xig1y0 )M, ~ Oforall i = 0,...,d -1 (see [15; 2.5]). Note that any module M always
admits a distingnished system of parameters (see |15; 2.6]).

Next, we show a relation between pf(M,) and pf(M,) when M, # 0.
Proposition 3.1. With the above notations. Let M, M,/ M,y for all Yo nd
Then if M, /7 0, we have pf(M,) - pf(M;).

Proof. let x -~ (ry,..,x4) be a distinguished system of parameters of M. Whenever
M, 7 0 then y ~ (x,...,2;) is a system of parameters of M,. Let n - (n,...,n,) an

i-tuple of positive integers and set y(n) = (z1*,...,x]").

One can easily check that the map

@1 M [Qu, (y(n)) — M,/ Qs (y(n))

defined by ¢(u + Qu, (y(n)))  u t Qum,(y(n)) for any u € M,, is a well defined and sur-
jective homomorphism. Because of 2 M,_, 0, we can check that @ is an isomorphism,
By dim M,_; <, we get e(y(n); M,) - e(y(n); M,). It follows that Inu(n) - Jm, y(n)

for all n — (ny,...,n,). Therefore pf(M,;) — pf(M,) as required. O
Corollary 3.2. Assume that M is a Cohen-Macaulay filtered module. Then the following

statements are true:

(i) If M, /0 then pf(M;) = —o0.
(it) pf(M) = —oc.

Proof. It is trivial.
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Corollary 3.3. Assume that M s a CME-module. Then pf(M,) -a¢ for all prime
tdeal p & Supp{ M ).
Proof. Bv [I15; 4.8, we have M, which is a CMFEF Ap-module for all p € Supp(M). I
follows that pf(M,) ¢ for all p € Supp(M) as required. O
Let M be a finitely generated A-module such that pf(M)  —oc. From the above
proposition, a natural question is whether M is a Cohen-Macaulay filtered module? n-
fornately, this guestion is not true in general because of the following counterexample.
Example 3.4. There exist a finitely generated A-module with pf(M) = —oc, but M is
not a C'MF module.
et (A,m) denote a local Noetherian ring and M a finitely generated A-module.

Clonsider the idealization A o« M of M over A. That is, the additive group A o« M
coinsides with the direct sum of abelian groups A and M. The multiplication is given by

(a,m) (b,n) = (ab,an + bm).

Then B A x M is a d-dimensional local ring (see [2; 3.3.22] or |9; 1.1]) for more details.

Now suppose that (A, m) is a d-dimensional Cohen-Macaulay ring. Let M be not
a CMF A-module with dima M = < d. Let M {M, }o<.<a denote the dimension
filtration of M. Now put

Ax M for'i =,
B, Dox M fort =t+1,..,d—-1 and
O M,  fori=0_.1.

Then {B, }o<i<q is a dimension filtration of B = A o« M such that By = A o M.

Note that

A for 1 — d,
B,/B,_.l ™ 0 fori =t+1,..,d—1 and
M/ M, fort == 1,.. L.

Then, B is not a CMF B-module. On the other hand, we have an exact sequence of the
B-homomorphisms as follows

0— DM —B-EiA-—0

where p is defined by p(a,m) — a for any (a,m) € B. It follows that B/O xM ~ Aas
B-module. Thus, we get pf(B/0 x M) = pfg(A). Finally, we have to prove pfg(B)

pfe(B/0 « M). Indeed, set N = 0 « M and B = B/N. Let I = Ann(N). Since
dimpgp N -t <d, we have I ¢ p for all p € Ass(B) with dim B/p = d. So we can cheose
an element z; € I such that z, ¢ p for all p € Ass(B) with dim B/p = d. Then, x; is
a parameter element of B and ;N = 0. Let z = (z;,...,z4) be an s.o.p on B. We can
show with the same method as in the proof of Proposition 3.1 that Jg ,(n) = Jg ,(n) for
all n = (ny,...,ng). Because A is a Cohen-Macaulay B-module, we have pfe(B) = -0
as required. O
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I1V. Modules having pf(M)  —oc

First of all we need some notations which has been introduced in [3] and [5] ¢
follows.

The difference between lengths and multiplicities
Ing(n, ) I‘.’A(ﬂi’f(.r?‘ ) f'n’) —ny - nge{z; M)
considered as a function of n, where r — (zy,....xy)isans.opon M and n  (ny, ..., 1ng)

d-tuple positive integers. This function in general is not a polynomial of n for all ny. ... ¥
large enough (n > 0 for short). It is bounded above by the polynomial ny -yl (£),

Theorem 4.1. (see [3; 2.3|) The least degree of all polynomial of n bounding abo
Ini(n, x) is independent of the choice of .

Definition 4.2. (see [3; 2.4]) The numberial invariant of M is called the polynomaial tu;
of M and we denote by p(M).

In [3], for convenience the author stipulate that the degree of the zero-polynomi
equal to —oo.

Let H} (M) be the i-th local cohomology module of M with respect to the maxim
ideal m. Denote by E(A/m) the injective hull A/m and A the m-adic completion of .
We denote
K'(M) — Homu (Hy (M), E(A/m)),

the Matlis’ dual of HL (M), considering as finitely generated modules over A. We w
recall the modules M which satisfy the following condition:

( either K'(M) is a Cohen-Macaulay module of dimension 7
* ) d
or K M) =0 fori=1,..,d—1(d = dimM).

The class of modules M satisfying the condition () was given first by N.'I'. Cuong ai
V. T. Khoi in [5].
Remark 4.3.

(i) In case A has a dualizing complex, P. Schenzel has proved in [15; Theorem 5.5] th
M is a CMF-module if and only if for all 0 < ¢ < d the module of deficiency K'(A
is either zero or an i-dimensional Cohen-Macaulay module. Hence, each module |

-

satifies the condition (*) is, under the assumption that A A, a CMF-module,
(ii) Each A-module M holds the condition (*), we have pf(M) - —oc {see [3; 1.1}]).

Let £ = (xy,...,24) be an s.o.p on M. We denote
My="M[lzy, . .co0)M
for all 1= 1,:..;d.
Following we have the results,

Theorem 4.4. With the notations us above and dim M d > 1. Then the folloun
statements are equivalent:
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1) Forally 1,....d— 1, cither K'(M) s Cohen-Macaulay module of dimension 1 or
K'(AM) 0,

1) There erist an s.o.p x (£1,...,x4) on M such that r, 1s a reqular element of

Mici) forall j - Voo, d—1, b= 1., d =1 and £ 18 ¢ fdler regular sequence,

of. (1) = (). We will prove by induction on d. For d 1 there is nothing to prove.
d > 2 and suppose that the statement is true for all modules with dimension < d. By
Prime Avoidance Theorem, we can choose an element r, € m such that

T ¢ U p

o 1
pEAss(M) |J Ass(K (M})\{m}
10l

refore, we can take r; as a first element of the system of parameters on M.

M, M/xzyM. Since for all 3 = 1,....,d — 1, either K7(M) is a Cohen-Macaulay

lule of dimension j or K/(M) .~ 0, then r; is a regular element of K7(M) for all
l....,d — 1. By |5; 3.2, (iv)|, M, holds the condition (z). Applying the inductive

othesis for M,, there exists an s. p. o. 2’ = (x3,...,24) on M, and it satisfies the
lition (i1). It follows that an s.o.p & — (x;..... z4) holds the condition (ii).

(ii).=> (i). We will prove by induction d. For d 1, there is nothing to prove.

For d > 2 and suppose that the statement is true for all modules with dimension
- Since 1y is a filter regular element of M,we have HE (M /(0: z,)) > HL(M) for all
| . The exact sequence

0 — M/(0:z,) = M — M/aM — 0
ls the following exact sequence of local cohomology modules
0 — HL(M)/zH) (M) — HLA(M/z;M) — (0: ;) ;551 (M) — 0

Mlj=1,..,d-2

ng the Matlis duality of this exact sequence, we get exact sequence

0~ K'Y M) 2i KIYHM) — K (M[5iM) — (0221 ) s gy — 0
il j - 1,...d — 2. By the hypothesis of ry, we obtain (0 : Il}a‘:(M; 0 for all
l,....,d — 2. It follows that

Kt (M) /2, KPP (M) = KI(M /2, M)

Nj~1,..,d—-2 Applying the inductive hypothesis for M /zy M, we get for all j
d—3, either K?(M /M) is a Cohen-Macaulay of dimension j or K’(M /z, M) = 0.
each j = 1,..,d = 3, if KI(M/z;M) = 0, there is K’*' (M) = z; K?*Y(M). It
ws that K7''(M) = 0 by Lemma Nakayama. Because of r; is a regular element of
"(M) and if K?(M /zyM) is a Cohen-Macaulay of dimension j, we can easily check
K7t (M) is a Cohen-Macaulay module of dimension j + 1. Finally, we can easily
< that gither K'(M) is a Cohen-Macaulay of dimension 1 or K'(M) - 0 by the choice
as required. a
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Proposition 4.5. With the notations as above and dim M d > 2. Assume that there
emst an s.op x —~ (xy,...,xq) on M such that for all i lLood =2, 2, € p for all
p € Ass(M,_1) withdim A/p > d—i—1 and z, is a regular element of K9="=Y(M,_1) and
m & Ass K'(My_2). Then for alli - 1,....d—1, either K9'(M,_;) is a Cohen- Macaulay
module of dimension d —i or K4~'{(M,_;) = 0.

Proof. Note that HL (M /(0 : x,)) = HL(M) for i > d — 2 by the hypothesis of ;.
Therefore, from the derived local cohomology sequence of the exact sequence

0—=M/(0:2y) =M — M/2\M — 0,
we have an exact sequence of local cohomology modules

0 — Ha Y (M)/z Hy (M) — HZ™ 3 (M /2 M) = (0:21) a1y, — O

Taking the Matlish duality of this exact sequence, we get an exact sequence

ke K'iul(M}/I] Kdnlfﬂf”—* Kd—2(M/I1M) — (0:131);(& 2 M) — (),

Since z; is a regular element of K9 2(M), it follows that
K=Y (M) /2 K* (M) >~ K 3(M,).
With the same method as in the above proof, we can check that
K* Y Mio1)/zi K (M) 2 K Y(M,)

for all i = 2,....d —2. If KY(My_3) # 0, there is depth K'(My_o) = dim K'(My_»).
Thus K'(My_3) is a Cohen-Macaulay module of dimension 1. We can show with the
same method as in the conversly proof of Theorem 4.3 that for all ¢ ~ 2, .. d — 2, either
K*(M,_y) is a Cohen-Macaulay module of dimension d — i or K9 *(M,_;) 0 as
required. O
Proposition 4.6. Suppose that dimM ~ d > 2 and p(M) < 2. Then f pf(M) <0, we
have pf(M,) ~ —oc for all p € Supp(M) \ {m}.

Proof. Let p € Spec A and q be an element of Ass (ﬁ/pﬁ) such that dim A/q  dim Alp.
Let f: Ay — Aq be a natural homomorphism. Since [ is faithfull flat and dim(M,)
dim(fﬁq). we can check that pf(M,) pf(ﬁf?q). Therefore, without loss of any generality
we may assume that A is complete with respect to the m-adic topology. It follows by |14;
2.2.3| that

K (M) ~ (K“‘““‘"”(A-f})p

for all p € Supp(M) and all j = 1,....dimM,. If p(M) < 1, by [6; 4.2] we have
P(H,‘,,(M‘)) < oofori=2,..,d=-1. Soit follows by [7; 2.5 that for all p € Supp(M)\ {m)

and all 3 = 1,...,dim My, either K7(M,) is a Cohen-Macaulay module of dimension j or
Ki(M,) = 0. By [5; 1.1] we get pf(M,) = —oo.

If p(M) = 2, by |6; 5.4] we have £(HYL(M)) <ocfori=3,..,d—1and K*(M)isa
generalized Cohen-Macaulay module of dimension 2. By [7; 2.5} and [5; 1.1], we obtained
pf(M,) -~ —oc as required. O
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MODUN VOI pf(M) <0
Nguyén Thai Hoa
Khoa Todn, Dai hoc su pham Quy Nhon
Trong bai nay, c!uing toi dira ra mot dac trung cia nhirng modun M vai pf(M) < 0.

Tiép theo, chiing toi tim mét s6 maoi lien hé gitra bat bién pf(M) vai nhirng modun loc
hoa Cauhen-Macaulay durgce dinh nghid béi P. Schenzel. Cuéi eiing, dua ra mot so tinh
chit cia nhitng modun cé pf(M) = —oo.



