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ON THE ANT COLONY SYSTEM FOR POSTMAN PROBLEM

Hoang Xuan Huan, Dinh Trung Hoang
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Abstract. The ant colony system (ACS) introduced by Dorigo M. et al (see [7,8,9])
is a distributed algorithm that simulates behavior of real ants of finding the shortest
path from a food source to their nest [1] in order to solve the postman problem
(or traveling salesman problem). Experimental results have shown that the ACS
outperforms other nature-inspired algorithms such as simulated annealing, neural
nets, genetic algorithm... This paper first considers the influence of the pheromone
updating parameter and the allocation of starting cities for artificial ants in order to
make the algorithm more efficient in static problem. Then, we introduce framework
for real time problems, using this algorithm.

I. Introduction

Real ants are capable of finding the shortest path from a food source to their nest
(1] without using visual cues by exploiting pheromone information. While walking, ants
deposit chemical traces (pheromone) and follow, in probability, pheromone previously
deposited by other ants to find a shortest path between two points.

The above behavior of real ants has inspired many ant algorithms (see [2-11];[16])
to efficiently solve different types of combinatorial optimization problems. In particular,
ACS algorithm (Dorigo M. et al [7,8,9]) has been shown to be very efficient to solve the
synunetric and asymmetric postman problems (PMP). The main idea of ACS is that of
having m agents, called ants, search in parallel for good solutions to the PMP and cooper-
ate through pheromone-mediated indirect and global communication by using a common
memory that corresponds to the pheromone deposited by real ants. Informally, each ant
constructs a PMP solution in an iterative way: it adds news cities to a partial solution by
exploiting both informations gained from past experience and a greedy heuristic. Memory
takes the form of pheromone deposited on PMP edges, while heuristic information is sim-
ply given by the edge’s length. This paper first considers the influence of the pheromone-
updating parameter and the allocation of starting cities for artificial ants to algorithm
efficiency in static problem. Experimental results have shown that the efficiency of ACS
is improved when we randomly allocate starting cities for artificial ants at each iterative
step.

On the other hand, in real time problems, the edge lengths are not previously known
and can be stochastic processes determined during run-time. Then, we also propose a
framework for this case.

This paper is organized as follows. In section II, we review the postman problem.
Section III introduces briefly the ACS for static problem, which has been proposed in [9]
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and [10]. Section IV is dedicated to consider the pheromone updating parameter and the
allocation of starting cities for artificial ants. Section V proposes a framework for real
time problems.

II. Postman problem

2.1. Static problem

The static postman problem (PMP) is a relatively old problem, it was documented

as early as 1759 by Euler (though not by that mane) whose interest was in solving the
knights” tour problem. A correct solution would have a knight visit each of the 64 squares
of a chessboard exactly once in its tour.

General PMP can be described as follows. Let G = (V, E) be a graph (sitmple or
directed graph), V' be the set of N cities, E = {(r,s) : ,s € V} be the edge set and I(r, s)
be a length (or cost) measure associated with edge (r,s) € E. The PMP is the problem of
finding a minimal closed tour that visit each city one. If I(r, s) # l(s,r) for at least some
(r.s) € E then the PMP is asymmetric.

This problem was proved to be NP-hard (see [12]). It arises in numerous applications
and the number of cities might be quite significant as stated in [14].

2.2. Real- tz'me_z Problem

Real-time problem is an extension of the static model in which the length of edges
is not previously known. For every (r,s) € E, its length can be measured during run time
as a stochastic process of following form:

I(r, s,f,) = g(r, s,t) + w(r,s,1), (1)

where, g(r,s,t) is trend and w(r, s,t) is white noise. The Real-time problem (RPMP )
is the following problem. Basing on trials at a time sequence {t, } before a time 7" and
lim, ,~ tn =T, we find a good tour (in average) at the time 7',

III. ACS for static problem

In this section we briefly present the ACS for the static problem (see [9],(10] for
more detail). '

3.1. General description

In this framework, each ant is an agent moving through cities on a PMP graph.
[uitially, there are m ants placed on cities selected randomly. These artificial ants also
have a few capacities that natural ants have not. The ant k can determine how far it is
from each city to others, and is endowed with a working memory M, used to memorize
visited cities. At each step, ants move to new cities, modifying the pheromone trail on the
edges basing on state transition rule and pheromone updating rules. The process is then
iterated R times, where R is selected such that it is large enough.
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The shortest tour from the beginning of the trial is the solution of ACS. In general, it
is a good enough solution and when R large enough may be an optimal solution. Procedure

of AC'S is as follows:

Initialize
Loop /* at this level each loop is called an iteration i 4
Each ant is positioned on a starting node
Loop /* at this level each loop is called a step */
Each ant applies a state transition rule to incrementally
build a solution and a local pheromone updating rule
Until all ants have build a complete solution
A global pheromone updating rule is applied
Until End_Condition

3.2. State transition rule

In ACS for static problems (we also denote by ACS), an ant k in city r chooses
the city s to move to among those which do not belong to its working memory M (it is
emptied at the beginning of each new tour and is updated after each time step by adding
the new visited city) by applying the following probabilistic formula: .

o arg maXqye j, (r) {[T(Ts U)H’?(Ty u)}ﬁ} if q < qo0

§ = . (2)
S otherwise

where 7(r,u) is the amount of pheromone trail on edge (r,u),n(r,u) = 1/l(r,u) is a

heuristic function, Ji(r) is the set of remaining cities to be visited by ant k positioned
on city 7 (to make the feasible solution), 3 is a parameter which weighs the relative
importance of pheromone trail versus length (8 > 0),q is a value chosen randomly with
uniform probability in [0,1], go € (0,1) is a parameter, and S is a random variable selected
according to the following probability distribution, which favors edges which are shorter
and have a higher level of pheromone trail:

[r(r,8)] [n(r.9))? .
pr(r,s) = { S e, (] n(ru)]? if s € Ji(r) )
0 otherwise

The state transitions rule resulting from (3) is called random proportional rule and
can be performed by using roulette-wheel procedure (see [13,15]).

3.3. Pheromone updating rules

Pheromone trail is changed both locally and globally. Global updating rule is ap-
plied only to edges which belong to the best ant tour, and local updating rule is applied
to edges while ants construct a solution.

Global updating rule

Global updating is intended to reward edges, which belong to the shortest tour.
After all ant have completed their tours, the best ant (1.e. the ant which constructed the
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shortest tour from the beginning of the trial) deposits pheromone on visited edges which
belong to its tour. The pheromone level is update by applying the global updating rule of
().

T(r,8) < (1 — a)7(r, s) + aAT(r, s) (4)
where | e
if (r,s) € global-best-tour
Ar{r,s) = { Ugy) ‘( i ’
0 otherwise

0 < a < 1 is the pheromone decay parameter, and Lgy, is the length of the globally
best tour from the beginning of the trial. Expression (4) indicates that only those edges
belonging to the globally best tour will receive reinforcement

Local updating rule

While building a solution (i.e.. a tour), ants visit edges and change their pheromone
level by applying the local updating rule of (5)

o7(r,8) < (1 — p)7(r,s) + pdr(r,s) (

n
L)

where 0 < p < 1is a parameter. The term 7(r, s) can be defined as follows:

ot(r,s) = 719, where 7 initial pheromone level. (6)
drir.8) =1, (7)

IV, Pheromone updating parameter and starting cities

In [10], Dorigo and Gambardella has taken experiments and found that the exper-
imental optimal values of the parameters were weakly dependent of the problem, except
for 7. First we study the influence of 7, regarding algorithm efficiency.

4.1." Pheromone updating parameter

We denote by BE the optimal tour of PM P and e L;E. where Lz is the length
of BE.

Proposition 4.1.1. For every edge (r,s) € E, the following assertions holds
Ton = min{y, d7(r, s)} < 7(r,s) < max{y, 7o} = Tu (8)

Proof. According to expressions (4), (5) the proof is obvious by induction for iterative
steps. This proposition suggests that in order to obtain an optimal solution we have to
choose the initial pheromone level 74 < +. |

Now, we denote by 7(r,s,n) and BE(n) the pheromone level of (r,s) and the
shortest tour from the beginning of the trial when the iterative step n is completed.
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Theorem 4.1.2. The following assertions are valid:

a) The algorithm mentioned above is always convergent.

b) If there exist a ny such that for all n > ny, (r, s) does not receive global updating
pheromone then 7(r,s,n) converges in probability to dT(r, s).

Proof. Denote by L(n) the length of BE(n). Since sequence L(n) is decrease monotone
and is bounded by 0. the assertion a) is obvious.

We will prove b) with local updating rule (6) (the case (7) can be proved analo-
gously). For simplicity. we consider the symmetric graph, the asymmetric case is consid-
ered similarly. It follows from 75 < 7. and (8) that

T =T = 47(F,8) and o, = 4.
In expression (5H) . we rewrite:
(1 — p)7r(r.s) + pdr(r,s) =19 + (1 — p)[T(r,s) — 70).

Suppose that from the iterative step ng to the one n = ng + p the edge (r,s) is
updated pheromone h times by local rule then:

r(r.s.m) = 70+ (1 = p)[r(r, 5,10) — 18] < 70 + (1 = p)"(y = 70). (9)
Therefore, for all arbitrary e, there exist H such that Vh > H we have
T(r,8,n) — 79 < €. (10)

On the other hand, at each iterative step, we have an estimation of probability of
event that an ant k locally update the edge (r, s)

po=1-qy > Pi(r.s) = (1 —qo)ron’(r,s)/ Y n’(r,s)=a>0, (11)
(r,s)EE

where a, p0 € (0,1).

Now, for all 7 < mp we estimate the probability of the event that (r,s) is updated
i times from the step ng to the one n. In each iterative step, there are m ants, then this
problem can be considered as follows: there are mp ants, in any condition each ant can
update the edge (r,s) with a probability estimated by (11). We number these ants from
1 to mp and denote by A; the event that the ant j updates (7, s). from (11) we have:

V4, P(A;) < po and P(4;) <1-a.
Then

P(Al...AIA-J'_Fl...Amp)"'—" P(AQ...A1A1+1...f_lmp)P(Al/A‘z'--AiAj+l---Amp) S
< poP(Az...AiA 1. Amp).
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Continuing by reduction we have:
P(Al---AiAj—{—l“-Amp) S pb(l _ a)'m.p—-i.

Permuting the order of the ants, we receive: P((r,s) is updated i times) < CrpPo(1 —
a)”'?*. This implies that :

H
P(|r(r.s,n)—19| > €) < P((r,s) is updated less than H time) < ZC,,mp((l g)rt
=1

Then

lim P(|7(r,s,n) — 1| > ¢) < hm Z ppo — )i =

n—o0c
c-—l

This completes the proof.
C'omment
When we use local updating rule (7) or 75 = 0, the expression 79+ (1 — p)"*(y — 79)
quickly converges to 0 and the local updating process quickly become invalid. In this
case, the algorithm efficiency is worse. This coincides with the experimental results in 9

and [10]. If 79 = < then pheromone level change slightly, the algorithm become nearly
heuristic.

4.2. Starting cities

In [9] and [10], authors fixed starting city for each ant. This implies that when an
ant arrives final city of its tours, it obligates to return to the starting city without choice
although this edge may be long. Basing on this notice, we can select randomly starting
city for each ant at each iterative step (motive starting cities) in order to improve the
efficiency. We constructed two ACS by using two schemes:

+ Scheme 1 for the case of fixed starting cities

+ Scheme 2 for the case of motive starting cities

The ACS parameters were set 3 = 2,¢q0 = 0.9, = p = 0.1,79 = (NL)~!, where
L is the tour length produced by the nearest neighbor heuristic and N is the number of
cities. We apply these schemes for 50-city problems generated randomly and especially
for problems Bayg29 and Bays29 found in TSPLIB:

http://www.iwr.uniheidelberg.de/iwr/comopt /soft /tsplib95 /tsplib.html

Experimental observation has shown that scheme 2 is better than the first. The
following tables present results applied for problems Bayg29 and Bays29 (with 29 cities).
ACS was run for 1000 iterations and the results are averaged over 15 trials with different
ant quantity m. The best tour length was obtained out of 15 trials. The best tour length
and the best average tour length are in boldface.


http://www.iwr.uiiiheidelberg.de/iwr/comopt/soft/tsplib95/tsplib.html
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Table 1: Applied problem is Bayg29 with

m scheme | scheme 2
average best average | best
4 1673.67 | 1652 | 1657.33 | 1642
6 1681.83 | 1655 | 1659.17 | 1634
8 1658.5 1644 | 1645.33 | 1631
10 1648.83 1634 | 1646.67 | 1627
15 1649.5 1641 1641.5 | 1624

Table 2:Applied problem is Bays29

m scheme | scheme 2
average | best | average | best
4 2061.67 | 2045 | 2047.33 | 2036
6 2051.33 | 2036 2050 2034
8 2033.67 | 2020 2033 2020
10 2037.33 | 2033 | 2030.67 | 2020
15 2034.33 | 2028 | 2024.67 | 2020

V. A framework for real time problem
5.1. Description

As mention above, in RPM P the length of every edge (r,s) € E is a stochastic
process and not previously known. It has the form (1): I(r,s,t) = g(r, s,t) +w(r, s,t), and
can be measured at a time sequence {t,}(t, < T) and lim,, ,~ t, = T. Basing on this
data set we will find a good tour (in average) at T

For every edge (r, s), in common memory we use two variables I(r, s) and T * (r, s)
in order to store average length of (r,s) and the number of times that (7, s) are visited.
The algorithm is composed of two stages: initial stage and ant colony stage.

Initial stage. We measure values I(r, s, ty) of all edges at time ty and set: {(r,s) =
[(r.s,ty). T * (r,s) = 1 for every edge (r,s). Then we set the initial pheromone level
70 = (nLy) . where Ly is the tour length produced by the nearest neighbor heuristic for
the PM P with edge lengths I(r, s, tg).

Ant colony stage. We use m artificial ants to measure data. Operation of artificial
ants is similar to those in static problem with some modifications. At each time ¢,,. we
also denote by i (r. s,t,,) the length value of edge (r, s) measured at this time by an ant k.
When visiting edge (7. s) at time t,, an ant k measures value Iy (r, s,t,,), changes variables
[(r,s) and T * (1, s) by applying updating variable rules :

lr,s) « [U(r,s)T * (r,s) + le(r, s,t.))/[T * (7, 8) + 1], (12)
T x(r,8) « T x*(r,s)+1. (13)

Then it applies local updating rule by (5). The state transition is not changed.
Global updating rule is modified by iteration-best type, instead of global-best type
in subsection 3.3. In this type, value Ly, in (4) is replaced by L;, ( the length of the best
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tour in current iteration of the trial) and the best ant of this iteration deposits pheromone
on its path.
The following is basic for our framework.

Theorem 5.2. Suppose that in (1)t =t,, and

lim ¢, =T, lim g(r,s,t,) =g(r,s,T) (14)

n— 00 n—o0
then the above variable [(r, s) converges in probability to expectation of [(r,s.T)

Proof. Since (12) and (13) . at each iterative step the value I(r,s) is updated by the
average of all random values [y (7, s,t;) where h is from time t; to time ¢,,. According to
(14) and the fact that W (r, s, t) is white noisé we easy receive the conclusion of theorem.

By this framework, when n is large enough and ¢,, near to 7" we have a good enough
solution for RPM P.
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TAP CHi KHOA HOC DHQGHN, KHTN & CN, t.XVIII, n1 - 2002

VE HE-DAN KIEN CHO BAI TOAN NGUOI PUA THU
Hoang Xuan Huan, Pinh Trung Hoang
Khoa Cong nghé, DHQG Ha Noi

Hé dan kién (ACS) 12 thuat todn phan tin mo6 phong cdch tim dudng ngan nhat tir
ngudn thicc an vé t6 cua cdc con kién thuc (xem [7, 8, 9]). Cac két qua thuc nghiém
cho thay né 1a thuat todn néi troi so v6i cdc thuat todn noi troi so voi céc thuat todn mo
phong tién hod tu nhién khdc nhu: luyén kim, giai thuat di truyén, mang noron... Trong
bai nay ching toi khao sat theo cdch phan tich todn hoc vé anh hudng do6i véi hiéu qua
bai todn clia tham s6 cap nhat mui va phan bé cdc diém xuat phat cho mbi con kién dé
cai tién thuat toan.

Ngoai ra, cac bai toan dang sir dung hé dan kién thudng la bai toan thoi gian thuc.
Dé€ ddp tng nhu cdu xudt phat tir cdc bai todn nay, chung t6i gidi thiéu mot luge do cho
bai todn thoi gian thuc cho khi do dai cdc canh la cdc qua trinh ngdu nhién va tim 10i
giai dua vao dit liéu ¢ cic thdi diém trude do.



