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A bstract. The ant colony system (ACS) introduced by Dorigo M. et a I (see [7,8,9]) 
is a distributed algorithm that simulates behavior of real ants o f finding the shortest 
path from, a food source to their nest [1] in order to solve the postman problem 
(or traveling salesman problem). Experimental results have shown that the ACS  
outperforms other nature-inspired algorithms such as simulated annealing, neural 
nets, genetic algorithm... This paper first considers the influence of the pheromone 
updating parameter and the allocation of starting cities for artificial ants in order to 
make the algorithm more efficient in static problem. Then, we introduce framework 
for real time problems, using this algorithm.

I. Introduction

Real ants are capable of finding the shortest path from a food source to their nest 
[1] without using visual cues by exploiting pheromone information. While walking, ants 
deposit chemical traces (pheromone) and follow, in probability, pheromone previously 
deposited by other ants to find a shortest path between two points.

The above behavior of real ants has inspired many ant algorithms (see [2-11];[16]) 
to efficiently solve different types of combinatorial optimization problems. In particular, 
ACS algorithm (Dorigo M. et al [7,8,9]) has been shown to be very efficient to solve the 
symmetric and asymmetric postman problems (PM P). The main idea of ACS is tha t of 
having m agents, called ants, search in parallel for good solutions to the PM P and cooper­
ate through pheromone-mediated indirect and global communication by using a common 
memory that corresponds to the pheromone deposited by real ants. Informally, each ant 
constructs a PM P solution in an iterative way: it adds news cities to a partial solution by 
exploiting both informations gained from past experience and a greedy heuristic. Memory 
takes the form of pheromone deposited on PM P edges, while heuristic information is sim­
ply given by the edge’s length. This paper first considers the influence of the pheromone- 
updating parameter and the allocation of starting cities for artificial ants to algorithm 
efficiency in static problem. Experimental results have shown th a t the efficiency of ACS 
is improved when we randomly allocate starting cities for artificial ants a t each iterative 
step.

Oil the other hand, in real time problems, the edge lengths are not previously known 
and can be stochastic processes determined during run-time. Then, we also propose a 
framework for this case.

This paper is organized as follows. In section II, we review the postm an problem. 
Section III introduces briefly the ACS for static problem, which has been proposed in [9]
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and [10]. Section IV is dedicated to consider the pheromone updating parameter and the 
allocation of starting cities for artificial ants. Section V proposes a framework for real 
time problems.

II. Postm an problem

2.1. S ta tic  problem

The static postman problem (PMP) is a relatively old problem, it was documented 
as early as 1759 by Euler (though not by that mane) whose interest was ill solving the 
knights tour problem. A correct solution would have a knight visit each of the 64 squares 
of a chessboard exactly once in its tour.

General PM P can be described as follows. Let G =  (V,E)  be a graph (simple or 
directed graph), V  be the set of N  cities, E  = {(r,s) : r ,s  e  V}  be the edge set and l(r s ) 
be a length (or cost) measure associated with edge (r, s) e E.  The PM P is the problem of 
finding a minimal closed tour that visit each city one. If l{r,s) Ỷ  l(s,r)  for at least some 
(/’, s) G E  then the PMP is asymmetric.

This problem was proved to be NP-hard (see [12]). It arises in numerous applications 
and the number of cities might be quite significant as stated in [14].

2 .2 . R ea l-tim e  P rob lem

Real-time problem is an extension of the static model in which the length of edges 
is not previously known. For every (r, s) € E, its length can be measured during run time 
as a stochastic process of following form:

l (r , s , t )  = g(r ,s , t )  + w(r,s, t ) ,  (1 )

where, g{r,s, t)  is trend and w(r , s , t )  is white noise. The Real-time problem (RPM P ) 
is the following problem. Basing on trials at a time sequence {tn} before a time T  and 
lirrin^rjo t,n =  T,  we find a good tour (in average) at the time T.

III. ACS for static  problem

In this section we briefly present the ACS for the static problem (see [9],[10] for 
more detail).

3.1. General descrip tion

In this framework, each ant is an agent moving through cities on a PM P graph. 
Initially, there are m ants placed on cities selected randomly. These artificial ants also 
have a few capacities that natural ants have not. The ant k can determine how far it is 
from each city to others, and is endowed with a working memory M k used to memorize 
visited cities. At each step, ants move to new cities, modifying the pheromone trail on the 
edges basing on state transition rule and pheromone updating rules. The process is then 
iterated R  times, where R  is selected such that it is large enough.
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Thi' shortest, tour from the beginning of the trial is the solution of ACS. In general, it 
is a good enough solution and when R  large enough may be an optimal solution. Procedure 
of AC’S is as follows:

Initialize
Loop /* at this level each loop is called an iteration */

Each ant is positioned on a starting node 
Loop /* at this level each loop is called a step */

Each ant applies a state transition rule to incrementally 
build a solution and a local pheromone updating rule 

Until all ants have build a complete solution 
A global pheromone updating rule is applied 

Until End Condition

3.2. S ta te  tra n sitio n  rule

111 ACS for static problems (we also denote by ACS), an ant k in city r chooses 
the city s to move to among those which do not belong to its working memory M k (it is 
emptied a t the beginning of each new tour and is updated after each time step by adding 
the new visited city) by applying the following probabilistic formula:

where r(ryfz) is the amount of pheromone trail on edge (r,u),T}(r,u) =  1 / l{r,u)  is a 
heuristic function, Jfc(r) is the set of remaining cities to be visited by ant k positioned
oil city r (to make the feasible solution), /3 is a parameter which weighs the relative 
importance of pheromone trail versus length ((3 > 0),q is a value chosen randomly with 
uniform probability in [0,11, qo e (0,1) is a parameter, and 5  is a random variable selected 
according to th r following probability distribution, which favors edges which are shorter 
and have a higher level of pheromone trail:

The state transitions rule resulting from (3) is called random proportional rule and 
can be performed by using roulette-wheel procedure (see [13,15]).

#

3.3 . P herom one updating rules

Pheromone trail is changed both locally and globally. Global updating rule is ap­
plied only to edges which belong to the best ant tour, and local updating rule is applied 
to edges while ants construct a solution.

Global updating rule
Global updating is intended to reward edges, which belong to the shortest tour. 

After all ant have completed their tours, the best ant (I.e. the ant which constructed the

(2)

(3)
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shortest tour from the beginning of the trial) deposits pheromone on visited edges which 
belong to its tour. The pheromone level is update by applying the global updating rule of
(4).

T ( r ,  s ) ( 1  -  a ) r ( r ,  s) +  a A r(r , s)  ( 4 )

where
A  / \ _ f ( L q b  ) if (r >s ) £ global-best-tour

l ả t [ ĩ \ s ) — <
I 0 otherwise

0 < a  <  1 is the pheromone decay parameter, and Lgb is the length of the globally 
best tour from the beginning of the trial. Expression (4) indicates that only those edges 
belonging to the globally best tour will receive reinforcement 

Local updating rule
While building a solution (i.e.. a tour), ants visit edges and change their pheromone 

level by applying the local updating rule of (5)

ỏ r(r ,s)  <- (1 -  p)r(r, s) +  pôr(r, s) (5 )

where 0 < p < 1 is a parameter. The term Sr(r, s) can be defined as follows'
(i)

<5r(r, s). =  T o ,  where T() initial pheromone level. (6 )

(ii)
ổ r ( r ,s ) = 0 .  (7)

IV . P herom one updating param eter and starting c itie s

111 [10], Dorigo and Gambardella has taken experiments and found tha t the exper­
imental optimal values of the parameters were weakly dependent of the problem except 
for 70. First we study the influence of To regarding algorithm efficiency.

4-1- P h ero m o n e  u p d a tin g  p a ra m e te r

We denote by B E  the optimal tour of P M P  and 7  =  L õ l ,  where L b e  is the length 
of B E .

P ro p o s itio n  4.1.1. For every edge (r ,s ) € E, the following assertions holds

r m :=  m in{7, Sr(r,  s )}  <  r(r ,s)  <  m a x {7 ,r0} :=  Tu. (8)

Proof. According to expressions (4), (5) the proof is obvious by induction for iterative 
steps. This proposition suggests that in order to obtain an optimal solution we have to 
choose the initial pheromone level r0 < 7 .

Now, we denote by r ( r ,  s ,n )  and B E (n ) the pheromone level of (r, s) and the 
shortest tour from the beginning of the trial when the iterative step n  is completed.
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T h e o re m  4.1 .2 . The following assertions are valid:
a) The algorithm mentioned above is always convergent.
b) I f  there exist a no such that for all n > no, (r, s ) does not receive global updating 

pheromone then r ( r ,  5, n) converges in probability to Sr(ri s).

Proof. Denote by L(n) the length of B E (n). Since sequence L(n) is decrease monotone 
and is bounded 1)V 0. the assertion a) is obvious.

We will prove b) with local updating rule (6) (the case (7) can be proved analo­
gously). For simplicity, we consider the symmetric graph, the asymmetric case is consid­
ered similarly. It follows from To < 7 . and (8) that

Trn =  To =  Sr(r, 5) and Tu =  7.

Ill expression (5) , we rewrite:

(1 -  p)r{r,s) + p S r(r ,s)  =  To +  (1 -  p )[r(r,s) -  To].

Suppose tha t from the iterative step no to the one n  =  71q + p the edge (r, s) is 
updated pheromone h times by local rule then:

r ( r , s , n )  =  To +  (1 -  p)h{r(r, s , n 0) -  To] <  To +  (1 -  p )h{7 -  To). (9)

Therefore, for all arbitrary e, there exist H  such that v/i > H  we have

T( r , s , n)  -  To <  €. (10)

On the other hand, a t each iterative step, we have an estimation of probability of 
event that an ant k locally update the edge (r, s)

Po =  1 -  90 >  P k(r ,s )  >  (1 -  qo)TQĩi0 ( r , s ) /  7VP{r, s) =  a >  0, (11)
( r , s ) £ E

where a ,p 0 € (0, 1 ).
Now, for all i < m p  we estimate the probability of the event tha t (r, s) is updated 

i times from the step 71(3 to the one n. In each iterative step, there are m  ants, then this 
problem can be considered as follows: there are rrip ants, in any condition each ant can 
update the edge (r, s) with a probability estimated by (11). We number these ants from
1 to mp  and denote by A j the event that the ant j  updates (r,s). from (1 1 ) we have:

Vj, P { A j )  <  Po and P { Ăj )  < 1 -  a.

Then

P ( A \ . . , A l A j + \ . . . A Tnp) — P ( A 2 " - A i A j + i . . . A m p ) P ( A i / A 2 - - - A iA j+ \ . . . A rnp) <

Po p (A-2 • • ‘Á i A j  -f 1... Amp ).
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Continuing by reduction we have:

P (A l ...A lĂ H l ...Ăm,v) < pị( 1 -  a )mp- \

Permuting the order of the ants, we receive: P ((r, s) is updated i times) <  C jL p jU
a)’"!’- 1. This implies that :

H

P ( \r ( r ,s ,n ) -T 0\ > e) < P{{r,s) is updated less than H  time) < cịnppị (1 -  a)mp ~1
2= 1

Then

H

lim P ( |r ( r , s , n )  -  T0| >  c) <  lim c* Po(l -  a )mp_i =  0
n —>oo p —to c  ^ ^

z- =  l

This completes the proof.
Comment
When we use local updating rule (7) or To =  0, the expression T0-+ (1 - p)h{7  -  To) 

quickly converges to 0 and the local updating process quickly become invalid. In this 
case, the algorithm efficiency is worse. This coincides with the experimental results in 9 
and [10]. If To =  7  then pheromone level change slightly, the algorithm become nearly 
heuristic.

4-2. S ta r tin g  c itie s

In [9] and [10], authors fixed starting city for each ant. This implies that when an 
ant arrives final city of its tours, it obligates to return to the starting city without choice 
although this edge may be long. Basing on this notice, we can select randomly starting 
city for each ant at each iterative step (motive starting cities) in order to improve the 
efficiency. We constructed two ACS by using two schemes:

+  Scheme 1 for the case of fixed starting cities 
+ Scheme 2 for the case of motive starting cities
The A C S  parameters were set /3 = 2, q0 = 0.9, a  p — 0.1, To -  (N L )~ l . where

L is the tour length produced by the nearest neighbor heuristic and N  is the number of
cities. We apply these schemes for 50-city problems generated randomly and especially 
for problems Bayg29 and Bays29 found in TSPLIB:

http://w w w .iw r.uiiiheidelberg.de/iw r/com opt/soft/tsplib95/tsplib.htm l
Experimental observation has shown that scheme 2 is better than the first. The 

following tables present results applied for problems Bayg29 and Bays29 (with 29 cities). 
ACS was run for 1000 iterations and the results are averaged over 15 trials with different 
ant quantity m. The best tour length was obtained out of 15 trials. The best tour length 
and the best average tour length are in boldface.

http://www.iwr.uiiiheidelberg.de/iwr/comopt/soft/tsplib95/tsplib.html
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Table : Applied problem is Baye29 with
m scheme 1 scheme 2

average best average best
4 1673.67 16^2 1657.33 1642
6 1681.83 1655 1659.17 1634
8 1658.5 1644 1645.33 1631
10 1648.83 1634 1646.67 1627
15 1649.5 1641 1641.5 1624

T a b le  2:Applied problem is Bays29
m scheme 1 scheme 2

average best average best
4 2061.67 2045 2047.33 2036
6 2051.33 2036 2050 2034
8 2033.67 2020 2033 2020
10 2037.33 2033 2030.67 2020
15 2034.33 2028 2024.67 2020

V. A fram ew ork  for re a l t im e  p ro b lem

5 .1 . D esc r ip tio n

As mention above, ill R P M P  the length of every edge (r, s) € E  is a stochastic 
process and not previously known. It has the form (1): Z(r, 5, t ) — £f(r, 5 , t) + w(r, s, t), and 
can be measured a t a time sequence ị t n }(tn < T) and limn_xx>ín =  T. Basing oil this 
data set we will find a good tour (in average) at T.

For every edge (r, s), in common memory we use two variables /(r, s) and T  * (r, s) 
ill order to store average length of (r, s) and the number of times tha t (r, s) are visited. 
The algorithm is composed of two stages: initial stage and ant colony stage.

Initial stage. We measure values Z(r, s,io) of all edges a t time ÍQ and set: /(tvs) =  
l(r ,s ,t[)),T  * (r, s) =  1 for every edge (r, s). Then we set the initial pheromone level 
T() — (nLo)_1. where L() is the tour length produced by the nearest neighbor heuristic for 
the P M P  with edge lengths Z(r, .$,£()).

i4n£ colony stage. We use m artificial ants to measure data. Operation of artificial 
ants is similar to those in static problem with some modifications. At each time tn < we 
also denote by Zfc(r, s, tn ) the length value of edge (r, s) measured at this tim e by an ant k. 
When visiting edge (r, 5) at time tn an ant k measures value lk(r, s , t TL), changes variables 
Z(r, s) and T  * (r, s) by applying updating variable rules :

Z(r, s) <- [l(r, s )T  * (r, 5) +  Zfc(r, 5, in )]/[T * (r, 5) +  1], (12)

T  * (r, 5) T  * (r, 5) +  1. (13)

Then it applies local updating rule by (5). The state transition is not changed.
Global updating rule is modified by iteration-best type, instead of global-best type

ill subsection 3.3. In this type, value Lgb in (4) is replaced by Lib ( the length of the best
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tour ill current iteration of the trial) and the best ant of this iteration deposits pheromone 
on its path.

The following is basic for our framework.

T h eo rem  5.2. Suppose that in (1) t = tn and

lim tn = T, lim g(r, s, tn) = g(r, s, T ) (14)n—>oc 71—>DG

then the above variable l ( r , s )  converges in probability to  expectation o f l ( r , s , T )

Proof. Since (12) and (13) , at each iterative step the value Z(r, 5) is updated by the 
average of all random values lk (r ,s ,th )  where h is from time to to time tn . According to 
(14) and the fact that W7(r, s ,t)  is white noise we easy receive the conclusion of theorem.

By this framework, when n  is large enough and tn near to T  we have a good enough 
solution for R P M p .
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VỀ HỆ-ĐÀN KIÊN CHO BÀI TOÁN NGƯỜI ĐUA THƯ 
Hoàng Xuân Huấn, Đinh Trung Hoàng

Khoa Công nghệ, ĐHQG Hà Nội

Hệ đàn kiến (ACS) là thuật toán phân tán mô phòng cách tìm đường ngắn nhát từ
nguồn thức ăn vể tổ của các con kiến thực (xem [7, 8, 9]). Các kết quả thực nghiệm
cho thấy nó là thuật toán nổi trội so với các thuật toán nổi trội so với các thuật toán mồ 
phỏng tiến hoá tự nhiên khác như: luyện kim, giải thuật di truyền, mạng nơron... Trong 
bài này chúng tôi khảo sát theo cách phân tích toán học vể ảnh hưởng đối với hiệu quả 
bài toán của tham số cập nhật mùi và phân bố các điểm xuất phát cho mỗi con kiến để 
cải tiến thuật toán.

Ngoài ra, các bài toán đang sử dụng hệ đàn kiến thường là bài toán thời gian thực. 
Để đáp ứng nhu cầu xuất phát từ các bài toán này, chung tồi giới thiệu một lược đồ cho 
bài toán thời gian thực cho khi độ dài các cạnh là các quá trình ngẫu nhiên và tìm lời 
giải dựa vào dữ liệu ở các thời điểm trước đó.


