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CALCULATION OF THERMODYNAMIC PARAMETERS
OF BBC CRYSTALS IN XAFS THEORY
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Abstract. In this work a new quantum statistical procedure for calculation of ther-
modynamic parameters of hee erystals in X-ray Absorption Fine Structure (XAFS)
theory, using anharmonic-correlated Einstein model, has been presented. The ex-
pressions were derived for spring constant, Einstein temperature, Finstein frequency,
first cumulant or net-thermal expansion, second cumulant or Debye- Waller factor,
third cumulant and thermal expansion coefficient. The anharmonic coniributions
have been included and the theory 1s valid for all temperatures. Numerical calcula-
tions were carried out for bee crystals Mo and W, The results provide thermodynamic

properties of these systems.

I. INTRODUCTION

It is known that XAFS is the result of scattering of photoelectron by surrounding
neighbors of absorbing atom. Therefore, to get correct structural information of sub-
stances from XAFS spectra it is very important to know their thermodynamic properties
at any temperatures, especially with including anharmonic contributions [1-3}. The cu-
mulant expansion approach [4.5] has been developed to interpret these effects in XAFS
spectroscopy. Thermodynamic parameters of fee crystals described by cumulants have
heen evaluated [6]. This work is the next step of [6] devoted to calculation of thermody-
namic parameters of bee erystals in XAFS theory, using anharmonic - correlated Einstein
model [7]. Quantum statistical theory with phonon interaction procedure was used to
derive the expressions for spring constant, Einstein temperature, Einstein frequency, first
cumulant or net - thermal expansion, second cumuiant or Debye - Waller factor, third
cumulant and thermal expansion coefficient. They describe the temperature dependence
of these values including the anharmonic effects. Numerical calculations have been carried
out for bee erystals Mo and W. The results provide thermodynamic properties of these

systems.
[I. THEORY

The derivation of expressions for thermodynamic parameters of bee crystals in this
work is based on quantum statistical theory with quasi-harmonic approximation, according
to which the Hamiltonian of the system is written as a harmonic term with respect to the
equilibrium at a given temperature, plus an anharmonic perturbation
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Here z is deviation of the instantaneous bond length r of two atoms from their
equilibrium distance ry or the location of the interaction potential minimum; My and M
are the mass of absorbing and backscattering atom, respectively; the brackets <> denote
a thermal average. According to anharmonic-correlated Einstein model the interaction
between absorber and backscatterer is via an effective anharmonic Einstein potential
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which includes anharmonicity parameter k3 describing an asymmetry or skew in the pair
distribution function, as well as, contributions of a small atom cluster surrounding the
absorbing and backscattering atom, so the spring constant now becomes an effective one
kerr. The contributions of such cluster is taken into account by the sum ¢ which is over
absorber (i = ) and backscatterer (i = 1) and by the sum j which is over all their near
neighbors excluding the absorber and backscatterer themselves. The latter contributions
are described by the term’U(x), and R is the unit bond length vector.
From Eqs.(1-3) the interacting effective Einstein potential is given by

1 ;
Ug(y) = Ug(a) + §keff!f2 + 0Ug(y). (4)

In this work the interaction between each pair of atoms in the single bond is via
an anharmonic Morse potential. Expanded to third order about its minimum this model
becomes

U(z) = D(e” % — 2¢7°%) = D(—1 + a?z? — oz + ...), (5)
where D is the dissociation energy, and 1/a corresponds to the width of the potential. It
is usually sufficient to consider weak anharmonicity (i.e., first - order perturbation theory)
so that only the cubic term in this equation must be kept.

Substituting Eq.(5) into Eq.(3) with considering Fq.(4) and using the values ( Ry, Ri;)
from the table 1 for summation we obtain
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Tahle 1. Coordinations of 8 neighbors of a bee crystal with a, as lattice constant surrounding the
backscatterer at (0,0,0) and the values of ( l:\’.m R i)

Using these equations we got Einstein frequency wg and Einstein temperature g
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vhere kg is Boltzmann's constant. The cubic anharmonicity parameter ks is included in
dl Eqs.(6-8). Now we use first- order thermodynamic perturbation theory [8,9] to derive
he expressions for the cumulants and thermal expansion coefficient. The atom vibration
s quantized as phonon and anharmonicity is the result of phonon interaction. Therefore,
ve express y in terms of annihilation and creation operators, a and at, ie.,

Y = .r:r"{f'.r tat); o’ = (h/’?,twg)lfz, (9)

nd use the harmonic oscillator states | n > as eigenstates with eigenvalues E,, = nhwg
ignoring the zero point energy for convenience).

Using the derivation procedure as for the case of fce crystals [6] we obtain the first
umulant or net-thermal expansion

il S vyl U

he second cumulant or Debye-Waller factor (DWF):

2) _ 3 hopl+ 2

o 2 Da?l -z (1)
he third cumulant:
135 (hwg)?1 + 10z + 2°
P ¢ B (hwg)® 1+ (12)
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and the thermal expansion coefficient:

135 kp z(Inz)?

L it 13‘
T = 484 Dar (1 - 2)2 i
as well as the relation:
arrTo*  3z(1 + 2)in(1/2) (14
e® " (1-2)(1+10z+ 22) :

In all the above formulas r is the radius of the first shell and the temperature
variable z = ¢~?8/T is determined by 8 .The values of 0(!), 0%, 0 a¢, in Egs.(10-13
are dependent on the temperature T.

We use the approaches:
hwg

ltmpr_gz =1 — kB_T;

limr_sez = 0, (15

to get high-temperature limit, where the classical approximation is valid, and low tem
perature limit, where the quantum theory must be used. The above formulas (10-14) i1
these limits are presented in table 2

Values T >0 T—>w
gre 135ha (1 +22)/968Dat 135k, T/484Da
c’ 3ho , (1 +22)/ 22D’ 3k, T/11Da’
o 135(ho, )? (1+122)/10648D°a®  405(k,T)?/2662D%’
Oy 135k ,z(Inz)* (1+ 2z)/ 484Dar 135k, / 484Dar
o, rTe’ /o™ 3zin(1/z) 1/2

(3)

Table 2. Expression of o o' @ ,0; and their relation in low- temperature (T — 0 ) and

high-temperature (T — o) limits.

Note that the results for bee erystals presented above are different from those fo
fec [6] not only in spring constant k, £f, cubic anharmonic parameter ki, anharmoni
perturbation potential U, Einstein frequency wg and Einstein temperature g presente
in Egs.(6-8), but also in the temperature variable z. All they lead to the differenc
in the thermodynamic parameters presented in Eqs.(10-14). Nevertheless, their form ¢
temperature dependence is similar, so that we got the same form of the expression for th
relation arrTe?/a'® which approaches the classical value [2] of 1/2 at high temperature
as the conclusion by classical method and experiment |2.10].
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[TI. NUMERICAL RESULTS AND DISCUSSION

Now we apply the formulas derived in the previous section to numerical calculation
o bee crystals Mo and W, The parameters 1) and o of the Morse potential were taken
'om Rel.11; they were obtained using experimental values for the energy of sublimation,
ne cornpressibility, and the lattice constant.

[n table 3 we present the values of k.ff , wg, and g calculated by present procedure
nw Mo and W.

sample Bond k.o(N/m) o, (x10" Hz) 8, (K)
Mo Mo-Mo 107.289 3.659 280
W W-W 115.960 2.748 210

Table 3. Calculated values of Ky, 0 and 6, of Mo and W,
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Figure [. Temperature dependence of our Figure 2. Temperature dependence of our
calculated second cumulant 02 or Debye- calculated third cumulant crmfor Mo and W |
Waller factor for Mo and W. They contain They contain zero-point energy contributions
zero-point  energy contributions at low at low temperatures and are proportional to T?
lemperatures and are linear proportional to at high temperatures

T at high temperatures.

Figure 1 shows the temperature dependence of our calculated second cumulant o?
DWEF of Mo and W. They contain the zero point energy contribution and are linear
omotional to the temperature T at high temperatures as the conclusion of classical
sory and experiment [2,10]. Figure 2 illustrates the temperature dependence of our
iculated third cumulant ¢*! of Mo and W. They contain zero point energy contributions
d are proportional to T2 at high temperatures as concluded by classical theory and
periment [2,10]. The third cumulant is the result of anharmonic effects, that is why it is
v small and can be neglected at low temperatures. The temperature dependence of our
culated thermal expansion coefficient ar of Mo and W is presented in Figure 3. They
ve the from of specific heat, thus reflecting the fundamental of solid state theory, that
* thermal expansion is the result of anharmonic effects and is proportional to specific
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heat [9]. The relation aprTo? /o® determines the temperature, above which this relatio,
approaches the classical expression of 1/2 (Figure 4), that means, the classical limit is vali
[7]. In our case this temperature is about correlated Einstein temperature 0 = 2807
for Mo and 8¢ = 210K for W. Below this temperature the relation is strong temperatur
dependent and quantum theory must be used.
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Figure 3. Temperature dependence of our Figure 4. Temperature dependence of our
calculated thermal expansion coefficient cer for Mo calculated relation orrTo*/s™ for Mo and W.
and W . They have the form of specific heat and They approach the classical value ¥ at high
approach constant values at high temperatures. temperatures,

IV. CONCLUSION

In this work a new quantum statistical procedure for calculation of thermodynami
parameters of bee crystals in XAFS - theory using anharmonic-correlated Einstein mode
with Morse pair potential has been presented. The results are valid for all from low t
high temperatures.

Effective spring constant and anharmonic perturbation potential contain the cubi
anharmonicity parameter which influence on Einstein frequency and Einstein temperatur
leading to influence on the thermodynamic parameters such as cumulants and therm:
expansion coefficient.

The above results express thermodynamic properties of bee crystals. The firs
cumulant or net thermal expansion describing asymmetry of interacting potential, thir
cumulant, and thermal expansion coefficient are anharmonic effects, the second cumulan
or DWF describes un clastic effect of photoelectron. They are different from those ¢
fce crystals [6] due to the difference in k.sy and 8Ug, but they have the same qualitie
that o{1}, 62, ¢®) contain zero point energy contributions at low temperatures and at hig
temperatures 02 ~ T, 0® ~ T? arrTe?/a® — 1/2 as the conclusion of classical theor
and experiment [2,10], and ay has the from of specific heat, thus reflecting the fundament:
of solid state theory.
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Numerical results presented in table 2, as well as, Figures 1-4 illustrate the derived
rmulas for the case of Mo and W. They can be used for evaluation of experimental results
hen the measured results are available.

With the help of the above thermodynamic parameters we can get correct structural
formation from XAFS of bee erystals at any temperatures [2-6,10,12].
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\P CHI KHOA HOC PHQGHN, KHTN, t.XVi, n"2 - 2000

TINH CAC THAM SO NHIET PONG CUA CAC TINH THE CAU TRUC BCC
TRONG LY THUYET XAFS

Nguyén Vian Hiung, Vi Kim Thai Nguyén Ba Dirc
Khoa Vat Ly, Dai hoc Khoa hoc Tu nhién - DHQG HaNgi

B34i nay trinh bay mot phwong phap thong ke lzong tir mai dé tinh cic tham s6
iet deng cnia cdce tinh thé cau tmie lap phrong tam khoi (bee) trong lythuyét ve cdau
ic tink té cia hap thu tia X (XAFS) véi sit dung mo hinh Einstein tuong quan phi diéu
a. Cong trinh da dan ra cac biéu thire déi vai he s6 dan hoi, tan s6 Einstein, nhiét dé
nstein curmulant bac 3 va hé s6 dan né nhiét. Cac cong thire chira cac déng gop phi
su hoe va 1y thuyét duge théa man véi moi nhiet do. Cde tinh s6 da duge thye hién
i vai Mo va W. Cic két qua the hién cdc tinh chdt nhiét dong cia cac he trén.



