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ON SOME CONDITIONS FOR A PARAMETER
DEPENDENCE OF THE SOLUTIONS TO A LINEAR
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1. Introduction

In the Banach Space E. we consider the following differential equations:

dry
ot
dr
t

dy

b7

A()ry + R(t, A)xa (1
All)x (2

= R(t, Ny» , (3

where A(t), R(t, z) are linear bounded operators for £ € [0,7], A € |0, | and strongl
continuous on [0, T]; R(1,0) = 0.

Let us denote the Cauchy operators to the equations (1)-(3) with the initial condi
tions

X(0.0) = X(®)=Y(0X =l

A€ 0,0l by X(1,A)., X(f), Y(1, A) respectively (here ! is the unit operator).

Levin 1| proved the following theorem

Theorem 1. The pair of relations
X(t,2) = X(1), X' @\ - X"'(1) in L, (4
15 equivalent to the pair of relations
Y, A) L, Y )1 in L,

for anyp > 1 as A — 0. Here Lf, = LPEU.T
For p = o¢ (the case in which one actually deal with convergence of solutions i
(10, T]. Levin |2| presented the folowing result

] [-.\.'T,H‘HPI by .A'IV-K‘;— f ”.;
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heorem 2. Lel one of the conditrons
0 1R, < e
2 NRNR L, — 0;
2) RN RE(N) |, — 0:
i) IRNVR(N) = ROVR(M)|L, — 0.
satisfied as N — 0. Then the condition

Rt A) — 0 in €0, 7
b necessury and sufficient _fm' the converyence
X(t.A) — X(t) in |0, T,

vhere
t

R(t, \) /mum.
0

I the case of convergenee in €0, 7], Theorem 1 was extended by Stranss and Yourke [3]
n the nonlinear equation.

Using Theorem 1. the authors of papers [4], [5] have extended and generalised the
sult of Theorem 2.

In this paper we present necessary conditions on the coefficients of equation (1) for
1 validity of (4). We give an example, which is satisfied our condition but is not satisfied
evin's condition. The main result of this paper are theorem 3 and 4.

. Auxiliary lemmas

From now we denote:
P

ﬁm"/ﬂms
0

a1 ns consider the sequence of operators
;'1)'0{.)'. ,\] ) .‘\"1“. )\) I rtey ;1"3',.“. A) P e

IottaoN) s NE A Y o N A

termined by the following induction relation:

o p
Klo(l, XY = B(E X} ML, )) Zﬁuwmnaz%mum
'
k='}

k=2

]

ot

| & p
No(t ) = R(EA); N,(t,A) memmﬂ-ZiMQn
k=1 ke

amma 1 The solution of the problem

%-mmﬂvmff (5)
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can be represented in the form

P t
Y()=1I+ ()Y (t) - / M, (7)Y (7)dr. (¢
-1 g moro- [ v
and the solution of the problem
e = —ZR(t), Z(0) =1 (i
dt
can be represented in the form
p . t
2() - 1+Y 2R + / 2(r)N,(7)dr. (s
k=1 @

Proof. First let us prove formula (6).
For p = 1 we have

I + R(OY(t) — /uf R(T)R(r)Y (r)dr =I + R(t)Y(t) — [i ff(r)(i—il’(-r))d'r

J0

—1 + ROY (1) ~ ROT() + / R(T)Y (7)dr
J 1)

f
=1 R(m)Y(7)d

+./{; ()Y (7)dT
=Y(t).

Le., formula (6) is valid for p = 1
Let us now assume that (6) is valid for p > 1. Then

ptl

ZH* r)Y(:)-rf My (T)Y (7)dr

Z RE@)Y (1) + RPHY (Y (1)
k=

t P

f
/fo“trm(rw(r o7 - [ R (r)R(T)Y (r)dr
0 S )

k=1

/’ (Z'j 2 B ))V(T).:T - [ (_‘if?"-”m)r(r)dr
0 & dr Jo \dr

Zf{’*(f)v(;) o / M ()Y (r)dr + RMY(NY (1)
0

/ iettr )[ T]]dr—/; (I%f}""](r))}’(r)dr
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Ising the intergration in part we have then

Pt ‘ P '
Zf}’*(m'{:)-- / M, 1 (7)Y (7)dr Zﬂ’(r)\’(r) / M (7)Y (7)dr
Je= 1 s k=) by

Y(t)— 1,
Therefore,

!
0

3
Y(t) = I 4 Zﬁr*(rn’(r)—/ M ()Y (7)dr
) e ;

e formmla (6) is valid for p + 1 O
Formula (5) is proved similarly.

[.et us now consider the following Volterra equation

2(t) = / he)x(r)dr + f(t) (9)

0
‘here f(x) € L,|0,T| and h(t) € [0, T.

emma 2. The soluiton of (9) salisfies the estimate

lllL, < (1t T)hlig, exp il )1/,

ik i1
there S ! 2 |

The proof of this lemma was given in 5] O

. The case of L,|0.7"|, p > 1

Let us construct operators Mg, A), Ni(1. X), ;‘sr-h,.(f. A) and .r{f;,(!. A) using the same
whnigue as in Section 2, but with

ﬂfn(f f\) ;\'rll(!- A) 'R('rr ')")

fe set

Hi(,)) = Z RNt A) 3 Pt )) = Z RE(6, X) = My(¢,X)
k1 k=1

heorem 3. Lel the conditions
Ml 6 <1, IM{M)fe, S0 <00
' satisfies as A — 0 for some nonnegative integer 1. Then the condition
P(t,A) =0 inL,l0,T], A—0
necessary and sufficient for

Y(t,A) = I in L,[0,T}, A— 0.
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Proof: By virtue of Lemima 1 the Cauchy operator Y (1, A) for equation (3) can b
represented in the form

] t
Y. A) =1+ Z ff"'(f. MY (A - / M (T, A)Y (7, A)dr. (1€
k=1 o
From this. by our construction, we obtain
Y{t.2) - 1 = Z RECL Y (6.0 = N+ P, N)
fe=:1

-/ M, (. VY (7. A) = I]dr

1)

t
Hi(t, WY (L, A) = 11 + B(1, )) -/ M(T, M)|Y (7. ) = Idr
0
or ’
(I — H(t, )Y (L, A) = 1] = P(r, ) ~ / M (T, Y (7, X) — I]dr. (11
J 0
By virtue of the condition of the theorem. the operator |1 — H,(t, A)|7! exists for small

and satisfies the estimate
i ' o0
i — B, D)7 =3 8% = K < o0,
k=0 :
The last inequality in conjunction with (11) vields
i
WY (t, A) = 1| < K|[P(t, M|l + f\’] WM (7, MY (7, A) — Tjdr.

0

Applying the theorem on integral inequalities (see [6], p.154) we obtain
¥ (. 2) = 1 < &(t, ),

where o(t, A) is the solution of the Volterra equation
r -
£(0) = K [ IM(r. Mlla(F)dr ~ KRG
Jo
By Lemma 2, the solution of the last equation satisfies the estimate

flo(t. ML, < (1 + KT% | MM, exp K[IM;(M)L) K PN i, -

Therefore,

1Y (A) = I, < (1 + KT aexp Ko ) K| P.(\llL, -

The sufticiency is thereby proved.
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Furthemore, from (11} we have
. . .r
Pt A) = [T =H(NY({UA) =] / M. MY (1. X) = ldr

JH)

Ve apply the Holder inequalyty to obtain
12N, < (0 +OIYA) = T, + THIMA e, 1Y (3) = e,

‘onsecpuently, (1, A) — 0 in L0, 71 if Y(4.A) — 1 in L,|0,T] (A —0). This completes
he proof [J

We set now
J

Qi(t,A) = Ny(t, X) + 3 | R*(t, ).

G |

‘hearem 4. Let the conditions
1,0 <8 <1, 1N, <o <o
¢ satisfied as A — O for some integer j > 0. Then the condition

Q;(LA) =0 i L,J0,7), A=—0

i necessary and sufficient for

Y=Y t,A) =1 ;n L,|0.T], A— 0.

FProof: By Lemima 1, the solution of the problem

'% LERON) 0 A
s

in be represented in the form

7 '
Z(t,A) =1+ Zz(r.,\}i?“(r,,\) 1 / Z(T, \)N;(T, A)dr
k=1 i

1
1Z(1, ) = I = Hi(t, M) = O;(t,2) 4./ Z(r, \) = I|N; (7, N)dr (12).
J 0

pplving the same reasoning as in the proof of Theorem 3, we obtain the estimate

Z(t,) = I, < K(1 + KT#|N;(M]lL, exp KIN; (Ve 1Q5 (M, -

remains to pay attention that Z(t,A) = Y~1(¢, A).
The proof of necessity follows from (12) and the same observation.
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It is now clear that the combinations of Theorem 1,3 and 4 provides different suf-
ficient conditions for (4). In particular, by setting Hg(f. ) - 0 we obtain the following
easy to verify condition,

Theorem 5. Let |[R(A\)|lL, € @ < oo as A — 0. Then the condition R(t,\) —
0 in Lo[0,T), X — 0 is necessary and sufficient for the validity (4).

4. The case of ([0, 7

Since the relations
Y(t,A)—=1, Yt N)—=1, A—0

are equivalent in C0, T'], we set p = o0 (and hence g = 1) and obtain the following results
from theorems 1,3 and 4.

Theorem 6. Let the conditions
IHMle <6 <1, MM, €0 < o0

be satisfied as X — 0 for some nonnegative integer i. Then P,(t,\) — 0 in C[0,T] as
A — 0 if and only if X(t,\) — X(t) in C[]0,T] as A — 0.

Theorem 7. Let

IHiMle <6<1, IN; (ML, €0 <00

as A — 0 for some integer j > 0. Then Q;(t,\) — 0 in C[0,T] as A — 0 if and only i
X(t,A)— X(t) inCl|0,T] as A — 0.

The straightfoward proof of Theorems 6 and 7 can be obtained from (11), (12)
respectively, which the help of the Gronwall-Belman Lemma.

In closing, let us consider the following example:

d
—d.-Ifi = A(t).'r,\ 1 f\,(f-. Al);""'-A“
where
0 0 -;-{‘-(IS f:r
R(t, \) = 0 X €08 37 9
1 sin 2% 0 0

It is easy to check that R(t,A) — 0in €0, 7] as A — 0 and that none of Levin's
Theorem is satislied. However, it is not difficult to verify that the condition of Theorem
6 is satisfied with 7 = 1
Remark: Some extension for strong convegence of operators have been given in [7].
Acknowledgement: The author expresses his gratitude to Prof. Nguyen The Hoan for
his scientific advice
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P CHI KHOA HOC DHQGHN, KHTN, t XVI, n"3 - 2000

~ MOT VAL DIEU KIEN VE SU PHU THUOC THAM SO CUA NGHIEM
‘A PHUONG TRINH VI PHAN TUYEN TINH TRONG KHONG GIAN BANACH

Pham Ngoc Boi
Khoa Toan - Dai hoe Su pham Vinh

Trong khong gian Banach E, ta xét sir hoi tu cda nghiem cia phiong trinh vi phan
en tinh ¢o nhien:

du
g Alt)r ' T
Y A(t)r + R(t, Az

nghiem eita phirong trinh vi phan tuvén tinh thuan nhat:

il

W = {4(\' )..f1

ng do f thuge doan hira han [0, 7, A thuoe doan him han [0, o, A(1), K(t, A) la cac toan
tuyen tinh bi chan cua E va lien tye manh.

Bai bao nay 1a s tiép noi cic két eia aia Levin [1] va (2], dira ra mot s6 diéu kien
w ena [2] v vi du ehirng to khi do cae dien kien ena Lévin [2] khong thoa man ma
h 1y 6 (ena bai bao nay) thoa man



