GENERAL INTERPOLATION PROBLEMS INDUCED BY GENERALIZED RIGHT INVERTIBLE OPERATORS

Pham Thi Bach Ngoc

Hanoi University of Science, VNUH

Abstract. The general interpolation problem induced by a right invertible operator D with dim ker D = s ($0 < s < +\infty$) was introduced and investigated by Przeworska-Rolewicz D., and then devoloped by Ng. V. Mau and Ph. Q. Hung (see $\lfloor 1 \rfloor, \lfloor 2 \rfloor, \lfloor 4 \rfloor$). Later, Ng. V. Mau and Ng. M. Tuan have constructed the generalized right invertible operators (see $\lfloor 3 \rfloor$).

In this paper, we deal with a general interpolation problem induced by a generalized right invertible operator V with dim ker V = s $(0 < s < +\infty)$.

. Prelimilaries and notations.

Let X be a linear space over the field K of scalars, where $K = \mathbb{R}$ or $K = \mathbb{C}$. Denote Y L(X) the set of all linear operators with domains and ranges in X and by $R_1(X)$ the set of all generalized right invertible operators belong to L(X). For every $V \in R_1(X)$, we denote by \mathcal{R}_V^1 the set of all right inverses of V and by \mathcal{F}_V the set of all right initial perators for V, i.e,

$$\begin{split} \mathcal{R}_V^1 &:= \{W \in L(X): \ VWV = V, \ V^2W = V\}, \\ \mathcal{F}_V &:= \{F \in L(X): \ FX = \ker V, \ F^2 = F \ \text{ and } \exists W \in \mathcal{R}_V^1 \text{ such that } FW = 0\}. \end{split}$$

In the sequel, we shall assume that dim ker V = s $(0 < s < +\infty)$ and $\{e_1, \ldots, e_s\}$ a basis of ker V. Then ker $V = \bigoplus_{m=1}^s Z_m$, where $Z_m = \ln\{e_m\}, m = 1, \ldots, s$. Write

$$P_{N_m}(W) = \lim \{ W^k e_m, \ k = 0, \dots, N-1 \}, \ m = 1, \dots, s.$$
 (1.1)

definition 1.1. Let $V \in R_1(X)$ and $W \in \mathcal{R}^1_V$. Every element

$$u = \sum_{k=0}^{N-1} W^k z_k,$$
 (1.2)

here $z_{N-1} \neq 0$, $z_0, \ldots, z_{N-1} \in \ker V$ is said to be V - polynomial u of degree N-1.

General interpolation problem (GIP)

Consider the following problem

Given n finite sets I_i of different non-negative integers with $\#I_i = r_i, r_1 + \cdots + r_n = (i = 1, \ldots, n)$. Find a V - polynomial u of degree N-1 satisfying N conditions

$$F_i V^k u = u_{ik}, \ k \in I_i, \ i = 1, \dots, n,$$
 (2.1)

where $u_{ik} \in \ker V$ are given and F_1, \ldots, F_n are different right initial operators of V.

In the sequel, this problem will be called a general interpolation problem for generalized right invertible operator (Shorthy : GIP).

Suppose that the elements of sets I_i are ordered r_i - tuples $(k_{i_1}, \ldots, k_{ir_i})$, 0 $k_{i_1} < \cdots < k_{ir_i}$, $i = 1, \ldots, n$. Then (2.1) is of the form

$$F_i V^{k_{ij}} u = u_{ik_{ij}}, \quad i = 1, \dots, n; \quad j = 1, \dots, r_i.$$
 (2.

Write

$$u_{ik_{ij}} := u_{r_0 + \dots + r_{i-1} + j}, \quad r_0 = 0,$$
 (2.

$$u_v := \sum_{\eta=1}^s u'_{(v-1)s+\eta} e_{\eta}, \ u'_{(v-1)s+\eta} \in \mathcal{K}, \ v = 1, \dots, N,$$
 (2.

$$z_k := \sum_{\mu=1}^s z_{ks+\mu}^! e_\mu, \ z_{ks+\mu}^! \in \mathcal{K}, \ k = 0, \dots, N-1.$$
 (2.

Now, we can rewrite (1.2) in the form

$$u = \sum_{k=0}^{N-1} \sum_{\mu=1}^{s} z_{ks+\mu}^{*} W^{k} e_{\mu}. \tag{2}$$

It follows

$$F_i V^{k_{ij}} u = \sum_{k=0}^{N-1} \sum_{\mu=1}^s z_{ks+\mu}^! F_i V^{k_{ij}} W^k e_\mu = \sum_{k=k_{ij}}^{N-1} \sum_{\mu=1}^s z_{ks+\mu}^! F_i V W^{k-k_{ij}+1} e_\mu.$$

Since $F_i \in \mathcal{F}_V$ and $F_i X = \ker V$, we get

$$F_i V W^{k-k_{ij}+1} e_{\mu} = \sum_{\eta=1}^s \beta_{i,(k-k_{ij}),\mu,\eta} e_{\eta}; \quad \beta_{i,(k-k_{ij}),\mu,\eta} \in \mathcal{K}.$$
 (2.

These equalities imply that

$$\sum_{k=k_{ij}}^{N-1} \sum_{\mu=1}^{s} z'_{ks+\mu} \beta_{i,(k-k_{ij}),\mu,\eta} = u'_{(r_0+\dots+r_{i-1}+j-1)s+\eta}.$$
(2.

Write

$$\beta_{i,(k-k_{ij}),\mu,\eta} = \begin{cases} \beta_{(r_0+\dots+r_{i-1}+j-1)s+\eta,ks+\mu}^{,i} & \text{if } k \ge k_{ij}, \\ 0 & \text{if } 0 \le k < k_{ij} \end{cases}$$
 (2.

 $i = 1, \ldots, n; k = 0, \ldots, N-1; j = 1, \ldots, r_i; \mu, \eta = 1, \ldots, s.$

Rewrite (2.8) in the form

$$\sum_{q=k_{ij}s+1}^{Ns} z_q^i \beta_{p,q}^i = u_p^i, \qquad p = (r_0 + r_1 + \cdots, +r_{i-1} + j - 1)s + \eta. \tag{2.1}$$

Write

$$d_{p} = G_{i}^{k_{ij}\eta} := (\underbrace{0, \dots, 0}_{k_{ij}s \ zero}, \beta_{p,k_{ij}s+1}, \dots, \beta_{p,Ns}), \tag{2.11}$$

$$G_i^{(k_{ij})} := (G_i^{k_{ij}1}, \dots, G_i^{k_{ij}s})^T,$$
 (2.12)

$$G_i := (G_i^{(k_{i1})}, \dots, G_i^{(k_{ir_i})})^T,$$
 (2.13)

$$G := (G_1, \dots, G_n)^T,$$
 (2.14)

$$F_{ik_{ij}} := F_i V^{k_{ij}}, (2.15)$$

$$\widehat{F}_{i}^{(k_{ij})} := (F_{ik_{ij}}, F_{ik_{ij}}W, \dots, F_{ik_{ij}}W^{N-1}), \tag{2.16}$$

where A^T is the transposed matrix of A.

Lemma 2.1. The system of operators $\{F_{ik_{ij}}; i = 1, ..., n; j = 1, ..., r_i\}$ is linearly independent on every $P_{N_m}(W)$ (m = 1, ..., s) if and only if the system of vector-operators $\{\widehat{F}_i^{(k_{ij})}; i = 1, ..., n; j = 1, ..., r_i\}$ is linearly independent on every Z_m (m = 1, ..., s), where $P_{N_m}(W), F_{ik_{ij}}, \widehat{F}_i^{(k_{ij})}$ are defined by (1.2), (2.15), (2.16), respectively.

Proof. The system $\{\widehat{F}_i^{(k_{ij})}, i = 1, \ldots, n; j = 1, \ldots, r_i\}$ is linearly independent on Z_m $(m = 1, \ldots, s)$, i.e., the equality

$$\sum_{i=1}^{n} \sum_{j=1}^{r_i} \alpha_{ij} \widehat{F}_i^{(k_{ij})} u_m = 0, \ \forall u_m \in Z_m, \ \alpha_{ij} \in \mathcal{K}, \ m = 1, \dots, s,$$

implies $\alpha_{ij} = 0$ for i = 1, ..., n; $j = 1, ..., r_i$. It means that

$$\sum_{i=1}^{n} \sum_{j=1}^{r_i} \alpha_{ij} F_{ik_{ij}} W^k u_m = 0; \quad k = 0, \dots, N-1.$$

e,

$$\sum_{k=0}^{N-1} \beta_k \sum_{i=1}^n \sum_{j=1}^{r_i} \alpha_{ij} F_{ik_{ij}} W^k e_m = 0, \ \, \forall \beta_k \in \mathcal{K}, \ \, Z_m = \operatorname{lin}\{e_m\},$$

f and only if

$$\sum_{i=1}^n \sum_{j=1}^{r_i} \alpha_{ij} F_{ik_{ij}} \left(\sum_{k=0}^{N-1} \beta_k W^k e_m \right) = 0, \ \forall \beta_k \in \mathcal{K}.$$

Therefore

$$\sum_{i=1}^{n} \sum_{j=1}^{r_i} \alpha_{ij} F_{ik_{ij}} x_m = 0, \ \forall x_m \in P_{N_m}(W).$$

The proof is complete. \triangle

Lemma 2.2. The system $\{\widehat{F}_i^{(k_{ij})}; i = 1, ..., n; j = 1, ..., r_i\}$ is linearly independent on every Z_m (m = 1, ..., s) if and only if the system $\{d_p; p = 1, ..., Ns\}$ is linearly independent, where d_p is defined by formula (2.11).

Proof. Let the system $\{d_p; p = 1, \dots, Ns\}$ be linearly independent and

$$\sum_{i=1}^n \sum_{j=1}^{r_i} \alpha_{ijm} \widehat{F}_i^{(k_{ij})} u_m = 0, \quad \forall u_m \in Z_m, \quad \alpha_{ijm} \in \mathcal{K}, \quad m = 1, \ldots, s.$$

Then

$$\sum_{i=1}^{n} \sum_{j=1}^{r_i} \sum_{m=1}^{s} \alpha_{ijm} F_i V^{k_{ij}} W^k u_m = 0, \quad k = 0, \dots, N-1.$$

Hence.

$$\sum_{k=0}^{N-1} \gamma_k \sum_{i=1}^n \sum_{j=1}^r \sum_{m=1}^s \alpha_{ijm} F_i V^{k_{ij}} W^k u_m = 0, \ \forall \gamma_k \in \mathcal{K},$$

i.e.

$$\sum_{i=1}^n \sum_{j=1}^{r_i} \sum_{m=1}^s \sum_{k=k_{ij}}^{N-1} \alpha_{ijm} \gamma_k F_i V W^{k-k_{ij}+1} e_m = 0, \ \, \forall \gamma_k \in \mathcal{K}.$$

By the choosing $\gamma_k \in \mathcal{K}$ and by formula (2.7) we have

$$\sum_{i=1}^{n} \sum_{j=1}^{r_i} \sum_{m=1}^{s} \alpha_{ijm} \sum_{\mu=1}^{s} \beta_{i,(k-k_{ij}),m,\mu} e_{\mu} = 0.$$

Since $\{e_1, \ldots, e_s\}$ is a basis of ker V then

$$\sum_{i=1}^{n} \sum_{j=1}^{r_i} \sum_{m=1}^{s} \alpha_{ijm} \beta_{i,(k-k_{ij}),m,\mu} = 0, \quad k = 0, \ldots, N-1; \quad \mu = 1, \ldots, s.$$

The formulas (2.8) and (2.9) together imply

$$\sum_{p=1}^{Ns}\alpha_p^*d_p=0.$$

Now, our assumption implies that $\alpha_p^i = 0$, i.e., $\alpha_{ijm} = 0$. So the system $\{\widehat{F}_i^{(k_{ij})}; i = 0\}$ $1, \ldots, n, j = 1, \ldots, r_i$ is linearly independent on Z_m $(m = 1, \ldots, s)$.

Conversely, suppose that the system $\{\widehat{F}_i^{(k_{ij})}\}$ is linearly independent on every Z_r $(m=1,\ldots,s)$ i.e. the equality

$$\sum_{i=1}^{n} \sum_{j=1}^{r_{i}} \sum_{m=1}^{s} \alpha_{ijm} \hat{F}_{i}^{(k_{ij})} u_{m} = 0, \ \forall u_{m} \in Z_{m}, \ \alpha_{ijm} \in \mathcal{K}.$$

implies $\alpha_{ijm} = 0$ for $i = 1, \ldots, n; \ j = 1, \ldots, r_i$. On the other hand, if $\sum_{p=1}^{Ns} \alpha_p^* d_p = 0$, $\alpha_p^* \in \mathcal{K}$ then $\alpha_{ijm} = \alpha_{(r_0 + \ldots + r_{i-1} + j)s + m}^*$. S $\alpha_p = 0$ i.e. the system $\{d_p; p = 1, ..., Ns\}$ is linearly independent.

The proof is complete. \triangle

By combining Lemmas 2.1 and 2.2, it follows:

Theorem 2.1. A necessary and sufficient condition for det $\widehat{G} \neq 0$ is that the system $F_{ik_{ij}}$; $i = 1, \ldots, n; \ j = 1, \ldots, r_i$ } is linearly independent on every $P_{N_m}(W)$ $(m = \ldots, s)$, where G and $P_{N_m}(W)$ are defined by (2.11) - (2.14) and (1.1).

Theorem 2.2. The GIP has a unique solution for every $u_{ik} \in \ker V$ $(i = 1, ..., n; j = 1, ..., r_i)$ if and only if the system $\{F_{ik_{ij}}; i = 1, ..., n; j = 1, ..., r_i\}$ is linearly adependent on every $P_{N_m}(W)$ (m = 1, ..., s), where $r_1 + \cdots + r_n = N$. If this condition is satisfied then the unique solution of the GIP is of the form

$$u = \sum_{k=0}^{N-1} \sum_{\mu=1}^{s} z_{ks+\mu}^{*} W^{k} e_{\mu}, \tag{2.17}$$

where (z_1, \ldots, z_{Ns}) is a unique solution of the system

$$G(z_1, \dots, z_{Ns})^T = (u_1, \dots, u_{Ns})^T,$$
 (2.18)

n which G is defined by (2,11)-(2.14) and the elements u_1,\ldots,u_{Ns} are defined by (2.3)-(2.4).

Proof. Note that every solution of the GIP is of the form

$$u = \sum_{k=0}^{N-1} W^k z_k = \sum_{k=0}^{N-1} \sum_{\mu=1}^s W^k z_{ks+\mu}^* e_\mu = \sum_{k=0}^{N-1} \sum_{\mu=1}^s z_{ks+\mu}^* W^k e_\mu,$$

where $z'_{ks+\mu}$ is defined by (2.8), (2.9), (2.10).

The assumption and Theorem 2.1 imply that det $G \neq 0$ and we have the proof of he theorem. \triangle

As an application of theorems 2.1, 2.2 we shall give a solution of Hermite classical nterpolation problems for generalized right invertible operators.

Let $I_i = \{0, \ldots, r_i - 1\}, i = 1, \ldots, n$, then we obtain the following Hermite interpolation problem: Find a V- polynomial u of degree N-1 satisfying N conditions

$$F_i V^j u = u_{ij}; i = 1, ..., n; j = 0, ..., r_i - 1,$$

where $r_1 + \cdots, +r_n = N, \ u_{ij} \in \ker V$ are given.

Cheorem 2.3. The Hermite interpolation problem has a unique solution for every $u_{ik} \in \mathbb{R}$ for V $(i = 1, ..., n \ j = 0, ..., r_i - 1)$ if and only if the system $\{F_iV^j; i = 1, ..., n; \ j = 0, ..., r_i - 1\}$ is linearly in dependent on every $P_{N_m}(W)$ (m = 1, ..., s). If this condition is satisfied, then the unique solution of this problem is of the form

$$u = \sum_{k=0}^{N-1} \sum_{\mu=1}^{s} z_{ks+\mu}^{*} W^{k} e_{\mu},$$

where (z_1, \ldots, z_{Ns}) is a unique solution of the system

$$G(z_1, \ldots, z_{Ns})^T = (u_1, \ldots, u_{Ns})^T,$$

in which G is defined by (2.11) - (2.14) with $k_{ij} = j$, $j = 0, ..., r_i - 1$ and the element $u'_1, ..., u'_{Ns}$ are defined as follows

$$u_{ij} := u_{r_0 + \dots + r_{i-1} + j + 1},$$

$$u_v := \sum_{\eta = 1}^s u'_{(v-1)s + \eta} e_{\eta}, \ v = 1, \dots, N.$$

REFERENCES

- Ng. V. Mau and Ph. Q. Hung. On the general classical interpolation problem Journal of Science, Special Issue on Mathematics, Hanoi University, 1993, p 2 - 6
- [2] Ph. Q. Hung. On Lagrange interpolation problem induced by right invertible operators, Journal of Science, Special Issue on Mathematics, Hanoi University 1993, p 15 - 20.
- [3] Ng. V. Mau and Ng. M. Tuan. Algebraic properties of generalized right invertible operatos, *Demonstratio Math.*, Vol. XXX, 3(1997), p 495 - 508.
- [4] D. Przeworska Rolewicz, Algebraic Analysis, PWN Polish scientific Publisher and D. Reided Publishing Company, Warszawa - Dordrecht, 1988.

TẠP CHÍ KHOA HỌC ĐHQGHN, KHTN, $t.XVI, n^03 - 2000$

BÀI TOÁN NỘI SUY TỔNG QUÁT ĐỐI VỚI TOÁN TỬ KHẢ NGHỊCH PHẢI SUY RỘNG

Phạm Thị Bạch Ngọc

Đại học Khoa học Tự Nhiên, ĐHQG Hà Nội

Bài toán nội suy tổng quát trong lớp toán tử khả nghịch phải D với dim ker $D=(0 < s < +\infty)$ đã được Przeworska-Rolewicz, Nguyễn Văn Mậu và Phạm Quang Hưn nghiên cứu trong [1], [2], [4]. Sau đó Nguyễn Văn Mậu và Nguyễn Minh Tuấn đã xã dựng khái niệm toán tử khả nghịch phải suy rộng (xem [3]).

Trong bài này, chúng tôi giải quyết bài toán nội suy tổng quát trong lớp toán t
 khả nghịch phải suy rộng V với dim ker V = s (0 < $s < +\infty$).