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A bstract. We develop an abstract component language and a static type system that can tells us 
the maximum resources a program may use. We prove that the upper resource bound is sharp and 
we point out a polynomial algorithm that can infer the sharp bound. Knowing the maximal 
resources a program may request allows us to adjust resource usage o f  the program and to prevent 
it from raising exceptions or behaving unexpectedly on systems that do not have enough resources. 
This work extends our previous works in one crucial point: the deallocation primitive can free an 
instance beyond its local scope. This semantics makes the language much closer to practical ones.

1. In troduction

Any software program needs resources to 
run. These resources can be physical 
components such as memory or communication 
ports, or they can be virtual components o f the 
operating system or the underlying runtime 
machine such as file handles or TCP/IP sockets. 
As most o f these resources are limited, any 
computer program should be prepared for the 
out-of-resource situation at runtime.

There are several solutions to the problem, 
ranging from dynamic checking, testing to 
static analysis. Runtime checking for failure 
every time the progi'am requests for a resource 
is costly. These dynamic checks increase the 
program size and reduce its performance. On 
embedded and handheld devices only a small 
overhead is significant. Even when the dynamic 
checks are inserted, the program still stops

working when the system does not have enough 
resource. Testing is always necessary, but it 
does not cover all possibilities. Furtheimore, 
testing may not be applicable for modem 
applications which are extensible, composable 
from modules o f  thirdparties and these modules 
can be updated automatically. The last method 
is the best if  possible. It allows us to detect 
potential problems at compile time, before the 
program is deployed.

Component software is built from various 
components, possibly developed by third- 
parties [1,2]. These components may in turn use 
other components and so on. Upon execution, 
instances o f these components and their sub- 
compnents are created and discarded. Since 
each instance uses some resources, some 
components are required to have only a certain 
number o f  simultaneously active instances.

In this paper we explore the possibility o f a 
type system [3-5], a branch o f static analysis,
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which allows one to detect statically whether or 
not the number o f simultaneously active 
instances o f specific components exceeds the 
allowed number. Note that here we does not 
directly control actual resources. Instead we 
will abstract them by the number o f instances. 
Using types and effects systems [6,7], we can 
infer every specific resource by adding 
annotations to components using the resource.

This work extended our previous work [8] 
by allowing the deallocation operate beyond 
local store. The simple change in the 
operational semantics requires additional in­
formation in type expressions and some typing 
rules also need changes substantially. As it is 
unusual to allow deallocation go beyond a 
thread, we leave out the parallel composition 
for simplicity. The type system can be extended 
with the similar rule in [8] if  we add the parallel 
composition to the language.

Table 1.

The paper is organized as follows. Section 2 
introduces the component language and a small- 
step operational semantics. Section 3 defines 
types and the typing relation. Section 4 shows 
several important properties o f the system, 
among them are type soundness and sharpness 
o f resource bounds. Last, Section 5 concludes.

2. A com ponent language

2.7. Syntax

Component programs, declarations and 
expressions are defined in Table 2.1. We use 
extended Backus-Naur Fom i with infix I for 
choice and overlining for Kleene closure (zero 
or more iterations).

I

Syntax

1

ì^nHỊ Proizrain
D r d s D eclarations
/■; Hxprcssiiin

1 (■ Hmptv
n ev .r Instantiation
d e l .r D eallocation

i {E   ̂ E ] Choice

\ Scopc

I

1 E E Scqucncinu
1

Component names, ranged over by X, y, z, 
are collected in a set c. Component 
expressions, ranged over hy  A, E, can be 
empty expressions -  used for startup, or they 
can be formed by two primitives new and d e l  
for creating and deleting an instance o f a 
component, respectively, or they can be 
assembled by three composition operators:

choice, denoted by +, scope, denoted by {}, and 
sequencing denoted by juxtaposition.

A new component X can be introduced from 
a component expression £■ by a declaration o f 
the form X < E  , which states that component X 
deploys the component expression E. We also 
call E  the body o f  X, For startup, we can declare 
a so-called prim itive component by giving its
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body an empty expression X ^  e  . A  primitive 
component is the one that does not depend on 
any other components, so it can be used to 
represent some specific resource such as a serial 
communication port.

A com ponent program  is defined by a list o f 
component declarations followed by a main 
expression, which will be the startup expression 
when the program  is executed.

2.2. Operational semantics

Table 2.2 defines formally the operational 
semantics by a transition system between 
configurations. A configuration is a stack o f 
pairs o f  a multiset and an expression. A con­
figuration is terminal if  it has the fonn (A/, e). 
We denote a stack S T  o f  n element by (Ml, El)
0...0 (Mn, EfJ where (Ml, E ị)  is the bottom, 
(Mn, E J  is the top o f the stack, and ‘o ’ is the 
stack separator.

Table 2. Transition rules

(osN ew ) .y < A  c  Di'cU  
T o ( . \ / .  n e y .r i : )  Z o { A f

(osD el) J- (_ Aíị: and ,r (/ .\íị._ ị ì . . . .  .\/,i

M ị: E'y; Ị o ,, o ( / : )- T  o

(osC hoice) i {1^1?}

{osPush)
^  T o { M .  / :} o  ( [ ] . . ! )

{osPop}
7 o [ A L E )

By the rules osNew, osDel, and osChoice 
we only rewrite the pair at the top o f the stack. 
The rule osNew first creates a new instance of 
component X in th e  local store. Then i f  X is a 
primitive com ponent it continues to execute the 
remaining expression £ ; otherwise, it continues 
to execute A before executing the remaining 
expression E.  The rule osDel deallocates an 
in stance  o f  X in  the  first sto re  from  the top o f  the 
stack, if  there exists one. If there exists no 
in stance  o f  X in the  w h o le  stack, the execu tion  is

stuck. Note that here we have abstracted away 
the specific instance that will be deleted. The 
rule osChoice selects a branch to execute and 
rules osPush and osPop are for the scope 
operator.

Up until now we have fully described the 
component language. Now we take a look at 
how specific resources are measured to answers 
the usual questions like how much memory or 
how many serial communication ports a pro­
gram uses?
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G iven a p rogram , a na tu ra l w ay  to in fer the 
m axim um  am oun t o f  a resou rce  that the 
p rogram  needs is to anno ta te  the usage o f  that 
resource that each  com p o n en t d irec tly  uses. 
T hai is. vvc have a function for each  resource  
that m aps every  com p o n en t nam e to the am oun t 
o f  the resource that the co m p o n en t d irec tly  
uses. T hen  w e can run the p rog ram  and 
ca lcu la te  the total reso u rce  co n su m p tio n  o f  each  
execu tion  state  by tak ing  the sum  o f  resou rces 
occup ied  by  all ex isting  instances. For exam ple, 
i f  a p rogram  has four com ponen ts  a, h, c, d  and 
com ponen ts  a and c each  uses 1KB o f  m em ory , 
components h and d  cach uses 2KB. Then at the 
state {[b, e, (I, d], E), the program occupies 7KB 
o f  m em ory.

In the above method, we need to examine 
all possible states o f the program to know the 
maximum resources that the program needs. In 
general, these methods are not applicable to 
dclcct these maxima sincc testing all possible 
runs is usually impossible due to a possible 
exponential number o f such runs or circular 
dependencies o f components. The type system 
in the next section can tell us the maximum re­
source consumption for a class o f programs and 
it inspires a polynomial algorithm to find such 
an upper bound.

3. A type system

The main purpose o f our type system is to 
find out the maximum number o f  coexistent 
instances that a program can create during the 
running of the program. We will need the 
maximum number for each component, so that 
mean we need to find a set o f pair X , n for each 
component .V. This is exactly the notion o f 
multiset, which is a set with multiple 
occurrences o f elements. Therefore multiset is

the right data structure for storing these maxima 
in a type expression.

Another important aspect o f most type 
systems is the property so-called 
compositionality. That is, type o f an expression 
can be computed from types o f its subexpres­
sions. In our language, the choice composition 
is not rather straightforward since the maximum 
if  A-^B is maximum o f two maxima o f Ả and 5, 
while the sequential composition is the much 
more sophisticated.

When composing AB  we need to know the 
maximum number o f instances o f A. During the 
running o f B, we need to know the maximum 
number o f instances that A left after its 
execution. So we need another multiset. But B 
can be a deallocation such as delx, this multiset 
should also has negative elements. So it needs 
to be a signed multiset. A signed m ultiset is a 
multiset but with negative occurrences o f 
elements.

Another point we need the type system to 
be able to detect is the safety o f  deallocation. 
When composing AB  and B  may have some 
deallocations, then we need to make sure that A 
has at least enough instances created so that 
deallocation in B  can be executed safely. 
Therefore, we need another multiset for storing 
the minimum number o f  instances that B  needs 
and this multiset will allow B  to be composed 
safely with any A that can create such minima.

Last, when an expression A is enclosed in a 
scope, {^} will not increase the number o f 
instances o f after the execution o f [A],  but it 
still can delete instances in the environment, as 
we can see the rule osDel. The maximum 
deallocation is exactly the safety multiset 
mentioned in previous paragraph. The 
minimum, however is the m inim um  number o f 
instances that barely guarantees the safety o f 
deallocation in A, in the run that has the least



8 6 H oang A . T n w n g  Ị V N U  Journal o f Science, Natural Sciences and Technology 24 (2008) 82-91

number o f  deallocations. Therefore, we need 
two safety stores for typing scope expressions.

Types are tuples o f three multisets and two 
signed multisets. W e let range over types.

D efinition 3.1. (Types). Types o f  component 
expressions are tuples

X = (^x\x\x‘, x \ x ‘)

where X ' , X ' ' , X ’ are multisets and x° ,x' 
are signed multisets.

M ultisets are denoted by [...], where sets are 
denoted, as usual, by M{x) is the
multiplicity o f  elem ent X  in the multiset M  and 
M{x) = 0 if  X Ể M  The operation u  is union of 
multisets: {M  u  N){x) = vadx{M{x),N{x)). The 
operation + or 1+) is additive union o f multisets: 
{M  + A0(-^) = Af(x) + N{x). We write M  + X ĩor 
M  +[x] and  when X  € A/ we write M - x  ĨOT M  - 
x]. Domain o f  M , also called support set, 

notation dom(A/), is the set o f elements that 
occur in M\ dom(A/) = {;c I M{x) 7̂  0}.

Similarly, a signed multiset M , also denoted 
by [...], over a set 5  is a map from 5  to z , the 
set o f  integers. For example, [x, -y, -y] is a 
signed multiset w here the multiplicity o f  X is 1 
and the multiplicity o f y  is -2. Signed multisets 
are also called hybrid set [9]. The analogous 
operations o f  m ultisets are defined for signed 
multisets. M(x) is the multiplicity o f X (can be 
negative); M{x) =  0 when X is not an element o f  
M, notation X Ể M . LetM , / /b e  signed multisets, 
then we have additive union: (M  + N)(x) = M(x) 
+ N(x); subfraction: {M - N)(x) = M(x) - N{x) 
union: {M  u  N){x) = max(M(;c), N{x))
intersection: {M  n  N)(x) = min(M(x), N{x))

inclusion: M  c  if  M{x) <N{x) for all X €  M\ 
domain or support set dom(Ả/) = {x I M(x) Ỷ 0}. 

Last, we define M  be the m ultiset received 

from M  by removing all elements with positive 
occuưences:

' M  i x ) , if M (x )  <  0 

0; if M (x )  >  0
M l {X)  —

Having the meanings o f each part o f a type, 
Table 3 describes all typing rules. Before 
looking at that table, we need to clarify some 
terminologies. A basis or typing environment is 
a list o f  declarations: Xj . An

empty basis is denoted by 0 .  Let r ,  A range 
over bases. The domain o f  a basis 
r = Xj notation dom(r), is

the set {xi,...,xn} .A typing judgem ent (or ju s t 
judgem ent) is a tuple o f  the form:

Y \ - E \ X

and it asserts that expression E  has type X  in the 
environment r .  A typing judgem ent can be 
regarded as valid  or invalid. Valid ones are 
identified by the following definitions.

Definition 3.2. (Valid typing judgements). 
Valid typing judgem ents T A \ X  are derived  

by applying the typing rules in Table 3 in the 
usual inductive way.

By the term usual inductive way we mean a 
valid judgem ent is one that can be obtained as 
the root o f  a tree o f  judgem ents, where each 
judgem ent is obtained from the ones 
immediately above it by some typing rule in 
Table 3. Such a ừee o f judgem ents IS called a 
typing derivation.
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Table 3. Typing rules

Axiom}

(Weaken)
r h .l;.v r h D:Y ,r Ể 

r..r-<£? r .l:.v

{New}
i ' r . l : A '  J - 'ỊÍ domi l'} 

r7 7 K ’.-r- 'nev J'T( A' ' -

{Del}
r  -  -4:.v .r e dom(r)

r del7:([.rjX']. I [-.(■])

{Seq)
r h . 4 : A '  T h  ữ : r  Á . D  ỹẺ t

Z" = X" I.j{r" - x ‘) Z’ = X' U{r' - X'’)
Z‘ = x> i) (.V''-*- V''} Z'' = A''̂  --- z' = .Y'  ̂V''

“T T ^ i b T z ..  .... ....

(Choice)
r  r  . l ; .v  r  r  B : ) '

z  = X" UV'"..V' n V\.V'LJ V''..V"ur'',.V' n Y’
r h (.1 . B] : Z

(Scope)
r -  . 1 :X

r h A''. -V'. - A''*)

These typing rules deserve some further 
explanation. The most critical rule is Seq 
because sequencing two expressions can lead to 
increase in instances o f  the composed 
expression. The first multiset o f  the type o f an 
expression is for the safety o f deallocations in 
the expression. First, we 4 still need X '  for the

safety o f deallocations in A. Second, since there 
are at least x ‘ instances after the execution of

A, we need at least (y* -  x ' ]  for the safety o f

B. Therefore, we need X ’ u  (y* —

instances for the safety o f deallocations in AB. 
T he second  m u ltise t is analogous, b u t fo r the
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minimal safety o f  deallocations. The third 
m u ltise t is the m ax im u m  in stan ces  tha t AB  can 
reach. It can be the maximum o f A or the 
m ax im al ou tco m e o f  A  to g e th e r w ith  the 
maximum o f B. The remaining two signed 
multisets, and are easy referring
to the semantics o f  them.

Other typing rules are straightforward. The 
rule Axiom is used for startup. The rule 
W eakenB allows us to extend a basis so that the 
rules Seq, Choice may be applied. The rule 
N e w  accumulates a new instance in type 
expression while the rule Del reduces by one 
instance. In the rule Del, the first two multisets 
are for the safety o f  the deallocation. The third 
m ultiset in the type o f d e l  X is empty since it 
has no effect to the maximum in composition, 
but the last two multisets are both [-x] since del 
X removes one X from the environment. The 
judgem ent r  \- A : X  in the premise o f this rule 

only guarantees that the basis r  is legal.

Now we can define the notion o f well-typed 
program  with respect to our type system. 
Basically, a program is well-typed if  we can 
derive a type for the main expression o f the 
program from a list o f  the program declarations. 
As mentioned in the Introduction Section 1, we 
have an polynomial algorithm (cf. [9]) which 
can automatically decide whether a program is 
well-typed or not.

Definition 3.3. (W ell-typed programs). 
Program Prog  = Decls; E  is well-typed i f  there 
exists a reordering r  o f  declarations in Decls 
such that T \ -  E  \X .

4. Soundness and  sharpness

We state several important properties o f the 
type system and left out some supporting 
properties that are similar as in [8'.

4.1, Soundness properties

One o f  the most im portant properties of 
static type systems is the soundness. It states 
that well-typed programs cannot cause type 
eưors. In our model, type eưors occur when the 
program tries to delete an instance which does 
not exists or when the program tries to 
instantiate a component X but there is no 
declaration o f X.  We will prove that these two 
situations will not happen. Besides, we will 
prove an additional important property which 
guarantees that a well-typed program will not 
create more instances than a maximum stated in 
its type, and the maximum is sharp.

Our proof o f  the type soundness is based on 
the approach o f W right and Felleisen [10]. We 
will prove two main lemmas: Preservation and 
Progress. The first lemma states that well- 
typedness is preserved under reduction. The 
latter guarantees that well-typed programs 
cannot get stuck, that is, move to a nonterminal 
state, from which it cannot move to another 
state. First we need to define what a well-typed 
configuration means.

D efinition 4.1. (W ell-typed configuration). 

Configuration T  = {M ị, E ị) o ... o {Mn, E„) is

well-typed with respect to a basis r ,  notation 

r  N X  ỉ/ fo r  h = L .n  there exists Z/, such that

r  r- ú ỉ ì l Ị  ỊT|̂  ! ' rGt5;;(/ỉ - I) n

where

rets.;i/;} =  \ M ị ,  -  ret5_’(/i -  Ì  )  ~  Z ' l

Note that we have simplified the definition 
o f  rets for trivial cases that vetsj{k) = 0 for 
k >  n.

The two standard lemmas for soundness 
property are stated as follows.
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L em m a 4.2. (Preservation). ĩ f r ị ^ T  and  T 

T \ t h e n  r > T ’

L em m a 4.3. (Progress). J f r \ = T ,  ihen either T

is term inated or there exists a configuration  T ’

such that T ^  T'.

Next, we show an invariant which allows us 
to infer the resource bounds o f well-typed 
programs. The invariant is about the 
monotonicity o f  the maximum number of 

instances that a w e ll-ty p ed  configuration T =

{Ml, £)} 0...0 (A/n, ^n) can reach. We calculate 
the maximum number as follows.

} I
m3xins(Tl =  I J m axinsịT./;)

Í, - 1

Where

m axínsiT ./í}  =  [ 7 :i,] • A’/, • reto,;{/j -  I } 

re to .;(/0  =  \}ỈI: ■ re to .;(/i - 1} - -VJ'; '

Where Xf, IS the type o f E/,. During 
transition, this maximum number o f  instances 
that the configuration can generate does not 
increase. Furthermore, when the maximum is 
not reach for some component, there exists a 
next configuration such that the maximum is 
the same. This allows us to prove the sharpness 
o f the type system.

Lem m a 4.4. (Invariant o f maxins). I f Y \ = T  

a n d T  -V/-* T ’, then

• maxins (T) 3  maxins (T ’)

• ^  rnaxins(T)(z) fo r  some z, 

then there exists T" such that T  T"

and  maxins(T) = maxins(T")

Now we can state the type soundness 
together with the upper bound o f instances that 
a welltyped program always respects.

T heorem  4.5. (Soundness). Let Prog = Decls; 
E  be well-typed, that is, r  \- E  :X  fo r  some 

reordering r o f  Deals and some type X. Then 

fo r  any T  such that ([], E) T  we have that

T  is not stuck and  [T] c  X .

4.2. Termination and sharpness

Before presenting the sharpness property, 
we need to show that any welltyped program 
tenninates in a finite number o f steps. The 
common tool for proving the termination o f 
programs (cf. [11, 5]) is to find a termination 
function  which maps program states to a well- 
founded set. A well-founded set is a set s with 
an ordering > on elements o f  s such that there 
can be no infinite descending sequences o f 
elements. We choose the set o f  natural numbers 
N and the usual ordering > to be a well-founded 
set (N,>). The termination function mts is 
defined for expressions and for configurations 
as follows.

0 . i f  /-: =  r

1. ii' E  — d e l  .1'

1 -  m ts i'.l) . i r / ỉ  =  n e v .r .  . r —cA (z D ic l^  

m ts (. l) - m ts ị l i} .  if E  =  À B  

'1 * m ts i. l). if E  — (.1 

1 -  iu;Lx(mts{.-l}. i i 'E =  (.1 B ]
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The integers 0, 1 and 2 in the definition are 
the coưesponding steps o f  the operational 

semantics. The function is defined for a stack T 

= (M u E]) 0 . . .0  E„) as follows:

m

Here /2 - 1 is the num ber o f osPop steps.

Note that, if  E  is the main expression of a 
w ell-ty p ed  p ro g ra m , then  mts(£) is the 
maximum ữansition steps that the program 
takes to terminate in any run, not all possible 
runs o f  the program  because there may be an 
exponential num ber o f  such runs. The following 
theorem guarantees the termination o f  any well- 
typed program.

T h eo ram  4.6. (Termination)

7. I f T  N T  and  T  'N/-* T', then mts(7) > mts 

(T ’)

2. A well-typed program  always terminates 
in a fin ite  number o f  steps.

Last, the sharpness o f  the type system 
shows that there is a run o f any welltyped 
program such that the maximum number o f 
instances reaches the bound expressed in pro­
gram ’s type.

T heorem  4.7 (Sharpness). Let Prog = Decls; E  
be welltyped, that is, Y h  E  : X  fo r  some

reordering  r  o f  D ecls and some type X. Then 
fo r  any z  6 X , there exists a sequence o f

configurations ([],£ )=  To T] ... TTn 

such that [T](z) = Xi{z).

4.3. Type inference

Type inference is similar to those in our 
previous works [8, 9]. We have a polynomial

type inference algorithm that can infer the type 
o f a program if  there is one, and it reports 
failure otherwise.

5. R elated  w orks and  conclusion

There are several other works on static and 
analysis o f memory use. In [12,13] Chin et. Al. 
presented a type system that can capture 
memory bounds o f object-oriented programs. 
He provided a framework in [13] for inferring 
abstract size o f programs as exact as possible 
(since they used Pres-burger formulae for size 
information). Our language has an explicit 
deallocation primitive and our computation o f 
resource bounds is exact. Crary and Weirich

14] presented decidable type systems for low 
level languages which are capable o f  specifying 
and certifying that their programs will terminate 
within a given amount o f  time, but the type 
system does not infer any bounds given by 
programmers. In contrast, out type systems 
focus on high level languages and they can infer 
the shaq) upper bounds o f resources, Hofmann

15] showed that linear type systems can ensure 
that programs do not increase the size o f their 
input so that exponential growth o f immediate 
results can be avoided, even with the presence 
o f iterated recursion. His languages are 
functional while ours are imperative.

We have presented an absừact component 
language that focuses on two primitives for 
manipulating resources (allocation and 
deallocation) and three composition operators: 
sequencing, choice, and scope. These operators 
are o f particular relevant to the dynamic 
semantics o f  the two prim itives for allocating 
and freeing resources. Then we have developed 
a static type system that can find the sharp 
resource bounds o f a component program. The 
type inference algorithm is polynomial as
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shown in our previous works. Due to space 
limitations, proofs are not included here. We 
plan to  p rov ide  a tech n ica l rep o rt th a t con ta ins 
all proofs.

We have left out some features such as 
loops, function calls, and recursions to simplify 
the system. Adding finite loops and function 
calls would not be difficult and would not cause 
substantial changes to the type systems. We 
plan to consider them in the future.

This work was partly supported by the 
research project No. 204006 entitled “Modern 
Methods for Building Intelligent Systems” 
granted by the National IT Fundamental 
Research Program o f Vietnam.
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