
VNƯ Journal of Science, Natural ScicncGS and Technology 24 (2008) 82-91

Finding upper bounds of component instances
with deallocation beyond local scope

Hoang A. Truong

College o f Technology, VNU, 144 Xuan Thuy Road, Cau Giay District, Hanoi, Vietnam

Received 31 October 2007

A bstract. We develop an abstract component language and a static type system that can tells us
the maximum resources a program may use. We prove that the upper resource bound is sharp and
we point out a polynomial algorithm that can infer the sharp bound. Knowing the maximal
resources a program may request allows us to adjust resource usage o f the program and to prevent
it from raising exceptions or behaving unexpectedly on systems that do not have enough resources.
This work extends our previous works in one crucial point: the deallocation primitive can free an
instance beyond its local scope. This semantics makes the language much closer to practical ones.

1. In troduction

Any software program needs resources to
run. These resources can be physical
components such as memory or communication
ports, or they can be virtual components o f the
operating system or the underlying runtime
machine such as file handles or TCP/IP sockets.
As most o f these resources are limited, any
computer program should be prepared for the
out-of-resource situation at runtime.

There are several solutions to the problem,
ranging from dynamic checking, testing to
static analysis. Runtime checking for failure
every time the progi'am requests for a resource
is costly. These dynamic checks increase the
program size and reduce its performance. On
embedded and handheld devices only a small
overhead is significant. Even when the dynamic
checks are inserted, the program still stops

working when the system does not have enough
resource. Testing is always necessary, but it
does not cover all possibilities. Furtheimore,
testing may not be applicable for modem
applications which are extensible, composable
from modules o f thirdparties and these modules
can be updated automatically. The last method
is the best if possible. It allows us to detect
potential problems at compile time, before the
program is deployed.

Component software is built from various
components, possibly developed by third-
parties [1,2]. These components may in turn use
other components and so on. Upon execution,
instances o f these components and their sub-
compnents are created and discarded. Since
each instance uses some resources, some
components are required to have only a certain
number o f simultaneously active instances.

In this paper we explore the possibility o f a
type system [3-5], a branch o f static analysis,

E-mail: hoangta@\nu.cdu.vn

82

Hoang /4. T m ong / VNƯ journal o f Science, Natural Sciences nnd Technology 24 (2008) 82-91 83

which allows one to detect statically whether or
not the number o f simultaneously active
instances o f specific components exceeds the
allowed number. Note that here we does not
directly control actual resources. Instead we
will abstract them by the number o f instances.
Using types and effects systems [6,7], we can
infer every specific resource by adding
annotations to components using the resource.

This work extended our previous work [8]
by allowing the deallocation operate beyond
local store. The simple change in the
operational semantics requires additional in
formation in type expressions and some typing
rules also need changes substantially. As it is
unusual to allow deallocation go beyond a
thread, we leave out the parallel composition
for simplicity. The type system can be extended
with the similar rule in [8] if we add the parallel
composition to the language.

Table 1.

The paper is organized as follows. Section 2
introduces the component language and a small-
step operational semantics. Section 3 defines
types and the typing relation. Section 4 shows
several important properties o f the system,
among them are type soundness and sharpness
o f resource bounds. Last, Section 5 concludes.

2. A com ponent language

2.7. Syntax

Component programs, declarations and
expressions are defined in Table 2.1. We use
extended Backus-Naur Fom i with infix I for
choice and overlining for Kleene closure (zero
or more iterations).

I

Syntax

1

ì^nHỊ Proizrain
D r d s D eclarations
/■; Hxprcssiiin

1 (■ Hmptv
n ev .r Instantiation
d e l .r D eallocation

i {E ̂ E] Choice

\ Scopc

I

1 E E Scqucncinu
1

Component names, ranged over by X, y, z,
are collected in a set c. Component
expressions, ranged over hy A, E, can be
empty expressions - used for startup, or they
can be formed by two primitives new and d e l
for creating and deleting an instance o f a
component, respectively, or they can be
assembled by three composition operators:

choice, denoted by +, scope, denoted by {}, and
sequencing denoted by juxtaposition.

A new component X can be introduced from
a component expression £■ by a declaration o f
the form X < E , which states that component X
deploys the component expression E. We also
call E the body o f X, For startup, we can declare
a so-called prim itive component by giving its

84 Hoang A . Truong Ị V N U journal o f Science, Natural Sciences and Technology 24 (2008) 82-91

body an empty expression X ^ e . A primitive
component is the one that does not depend on
any other components, so it can be used to
represent some specific resource such as a serial
communication port.

A com ponent program is defined by a list o f
component declarations followed by a main
expression, which will be the startup expression
when the program is executed.

2.2. Operational semantics

Table 2.2 defines formally the operational
semantics by a transition system between
configurations. A configuration is a stack o f
pairs o f a multiset and an expression. A con
figuration is terminal if it has the fonn (A/, e).
We denote a stack S T o f n element by (Ml, El)
0...0 (Mn, EfJ where (Ml, E ị) is the bottom,
(Mn, E J is the top o f the stack, and ‘o ’ is the
stack separator.

Table 2. Transition rules

(osN ew) .y < A c Di'cU
T o (. \ / . n e y .r i :) Z o { A f

(osD el) J- (_ Aíị: and ,r (/ .\íị._ ị ì\/,i

M ị: E'y; Ị o ,, o (/ :)- T o

(osC hoice) i {1^1?}

{osPush)
^ T o { M . / :} o ([] . . !)

{osPop}
7 o [A L E)

By the rules osNew, osDel, and osChoice
we only rewrite the pair at the top o f the stack.
The rule osNew first creates a new instance of
component X in th e local store. Then i f X is a
primitive com ponent it continues to execute the
remaining expression £ ; otherwise, it continues
to execute A before executing the remaining
expression E. The rule osDel deallocates an
in stance o f X in the first sto re from the top o f the
stack, if there exists one. If there exists no
in stance o f X in the w h o le stack, the execu tion is

stuck. Note that here we have abstracted away
the specific instance that will be deleted. The
rule osChoice selects a branch to execute and
rules osPush and osPop are for the scope
operator.

Up until now we have fully described the
component language. Now we take a look at
how specific resources are measured to answers
the usual questions like how much memory or
how many serial communication ports a pro
gram uses?

Hơí7/i<̂> v4. T m ong / VN U lournaỉ o f Science, Natural Sciences and Technology 24 (2008) 82-91 85

G iven a p rogram , a na tu ra l w ay to in fer the
m axim um am oun t o f a resou rce that the
p rogram needs is to anno ta te the usage o f that
resource that each com p o n en t d irec tly uses.
T hai is. vvc have a function for each resource
that m aps every com p o n en t nam e to the am oun t
o f the resource that the co m p o n en t d irec tly
uses. T hen w e can run the p rog ram and
ca lcu la te the total reso u rce co n su m p tio n o f each
execu tion state by tak ing the sum o f resou rces
occup ied by all ex isting instances. For exam ple,
i f a p rogram has four com ponen ts a, h, c, d and
com ponen ts a and c each uses 1KB o f m em ory ,
components h and d cach uses 2KB. Then at the
state {[b, e, (I, d], E), the program occupies 7KB
o f m em ory.

In the above method, we need to examine
all possible states o f the program to know the
maximum resources that the program needs. In
general, these methods are not applicable to
dclcct these maxima sincc testing all possible
runs is usually impossible due to a possible
exponential number o f such runs or circular
dependencies o f components. The type system
in the next section can tell us the maximum re
source consumption for a class o f programs and
it inspires a polynomial algorithm to find such
an upper bound.

3. A type system

The main purpose o f our type system is to
find out the maximum number o f coexistent
instances that a program can create during the
running of the program. We will need the
maximum number for each component, so that
mean we need to find a set o f pair X , n for each
component .V. This is exactly the notion o f
multiset, which is a set with multiple
occurrences o f elements. Therefore multiset is

the right data structure for storing these maxima
in a type expression.

Another important aspect o f most type
systems is the property so-called
compositionality. That is, type o f an expression
can be computed from types o f its subexpres
sions. In our language, the choice composition
is not rather straightforward since the maximum
if A-^B is maximum o f two maxima o f Ả and 5,
while the sequential composition is the much
more sophisticated.

When composing AB we need to know the
maximum number o f instances o f A. During the
running o f B, we need to know the maximum
number o f instances that A left after its
execution. So we need another multiset. But B
can be a deallocation such as delx, this multiset
should also has negative elements. So it needs
to be a signed multiset. A signed m ultiset is a
multiset but with negative occurrences o f
elements.

Another point we need the type system to
be able to detect is the safety o f deallocation.
When composing AB and B may have some
deallocations, then we need to make sure that A
has at least enough instances created so that
deallocation in B can be executed safely.
Therefore, we need another multiset for storing
the minimum number o f instances that B needs
and this multiset will allow B to be composed
safely with any A that can create such minima.

Last, when an expression A is enclosed in a
scope, {^} will not increase the number o f
instances o f after the execution o f [A], but it
still can delete instances in the environment, as
we can see the rule osDel. The maximum
deallocation is exactly the safety multiset
mentioned in previous paragraph. The
minimum, however is the m inim um number o f
instances that barely guarantees the safety o f
deallocation in A, in the run that has the least

8 6 H oang A . T n w n g Ị V N U Journal o f Science, Natural Sciences and Technology 24 (2008) 82-91

number o f deallocations. Therefore, we need
two safety stores for typing scope expressions.

Types are tuples o f three multisets and two
signed multisets. W e let range over types.

D efinition 3.1. (Types). Types o f component
expressions are tuples

X = (^x\x\x‘, x \ x ‘)

where X ' , X ' ' , X ’ are multisets and x° ,x'
are signed multisets.

M ultisets are denoted by [...], where sets are
denoted, as usual, by M{x) is the
multiplicity o f elem ent X in the multiset M and
M{x) = 0 if X Ể M The operation u is union of
multisets: {M u N){x) = vadx{M{x),N{x)). The
operation + or 1+) is additive union o f multisets:
{M + A0(-^) = Af(x) + N{x). We write M + X ĩor
M +[x] and when X € A/ we write M - x ĨOT M -
x]. Domain o f M , also called support set,

notation dom(A/), is the set o f elements that
occur in M\ dom(A/) = {;c I M{x) 7̂ 0}.

Similarly, a signed multiset M , also denoted
by [...], over a set 5 is a map from 5 to z , the
set o f integers. For example, [x, -y, -y] is a
signed multiset w here the multiplicity o f X is 1
and the multiplicity o f y is -2. Signed multisets
are also called hybrid set [9]. The analogous
operations o f m ultisets are defined for signed
multisets. M(x) is the multiplicity o f X (can be
negative); M{x) = 0 when X is not an element o f
M, notation X Ể M . LetM , / /b e signed multisets,
then we have additive union: (M + N)(x) = M(x)
+ N(x); subfraction: {M - N)(x) = M(x) - N{x)
union: {M u N){x) = max(M(;c), N{x))
intersection: {M n N)(x) = min(M(x), N{x))

inclusion: M c if M{x) <N{x) for all X € M\
domain or support set dom(Ả/) = {x I M(x) Ỷ 0}.

Last, we define M be the m ultiset received

from M by removing all elements with positive
occuưences:

' M i x) , if M (x) < 0

0; if M (x) > 0
M l {X) —

Having the meanings o f each part o f a type,
Table 3 describes all typing rules. Before
looking at that table, we need to clarify some
terminologies. A basis or typing environment is
a list o f declarations: Xj . An

empty basis is denoted by 0 . Let r , A range
over bases. The domain o f a basis
r = Xj notation dom(r), is

the set {xi,...,xn} .A typing judgem ent (or ju s t
judgem ent) is a tuple o f the form:

Y \ - E \ X

and it asserts that expression E has type X in the
environment r . A typing judgem ent can be
regarded as valid or invalid. Valid ones are
identified by the following definitions.

Definition 3.2. (Valid typing judgements).
Valid typing judgem ents T A \ X are derived

by applying the typing rules in Table 3 in the
usual inductive way.

By the term usual inductive way we mean a
valid judgem ent is one that can be obtained as
the root o f a tree o f judgem ents, where each
judgem ent is obtained from the ones
immediately above it by some typing rule in
Table 3. Such a ừee o f judgem ents IS called a
typing derivation.

Hoang A . Truong / V N U Journal o f Science, Natural Sciences and Technology 24 (2008) 82-91 87

Table 3. Typing rules

Axiom}

(Weaken)
r h .l;.v r h D:Y ,r Ể

r..r-<£? r .l:.v

{New}
i ' r . l : A ' J - 'ỊÍ domi l'}

r7 7 K ’.-r- 'nev J'T(A' ' -

{Del}
r - -4:.v .r e dom(r)

r del7:([.rjX']. I [-.(■])

{Seq)
r h . 4 : A ' T h ữ : r Á . D ỹẺ t

Z" = X" I.j{r" - x ‘) Z’ = X' U{r' - X'’)
Z‘ = x> i) (.V''-*- V''} Z'' = A''̂ --- z' = .Y' ̂V''

“T T ^ i b T z

(Choice)
r r . l ; .v r r B :) '

z = X" UV'"..V' n V\.V'LJ V''..V"ur'',.V' n Y’
r h (.1 . B] : Z

(Scope)
r - . 1 :X

r h A''. -V'. - A''*)

These typing rules deserve some further
explanation. The most critical rule is Seq
because sequencing two expressions can lead to
increase in instances o f the composed
expression. The first multiset o f the type o f an
expression is for the safety o f deallocations in
the expression. First, we 4 still need X ' for the

safety o f deallocations in A. Second, since there
are at least x ‘ instances after the execution of

A, we need at least (y* - x '] for the safety o f

B. Therefore, we need X ’ u (y* —

instances for the safety o f deallocations in AB.
T he second m u ltise t is analogous, b u t fo r the

88 Hoang A . Truong / V N U journal o f Science, Natural Sciences and Technology 24 (2008) 82-91

minimal safety o f deallocations. The third
m u ltise t is the m ax im u m in stan ces tha t AB can
reach. It can be the maximum o f A or the
m ax im al ou tco m e o f A to g e th e r w ith the
maximum o f B. The remaining two signed
multisets, and are easy referring
to the semantics o f them.

Other typing rules are straightforward. The
rule Axiom is used for startup. The rule
W eakenB allows us to extend a basis so that the
rules Seq, Choice may be applied. The rule
N e w accumulates a new instance in type
expression while the rule Del reduces by one
instance. In the rule Del, the first two multisets
are for the safety o f the deallocation. The third
m ultiset in the type o f d e l X is empty since it
has no effect to the maximum in composition,
but the last two multisets are both [-x] since del
X removes one X from the environment. The
judgem ent r \- A : X in the premise o f this rule

only guarantees that the basis r is legal.

Now we can define the notion o f well-typed
program with respect to our type system.
Basically, a program is well-typed if we can
derive a type for the main expression o f the
program from a list o f the program declarations.
As mentioned in the Introduction Section 1, we
have an polynomial algorithm (cf. [9]) which
can automatically decide whether a program is
well-typed or not.

Definition 3.3. (W ell-typed programs).
Program Prog = Decls; E is well-typed i f there
exists a reordering r o f declarations in Decls
such that T \ - E \X .

4. Soundness and sharpness

We state several important properties o f the
type system and left out some supporting
properties that are similar as in [8'.

4.1, Soundness properties

One o f the most im portant properties of
static type systems is the soundness. It states
that well-typed programs cannot cause type
eưors. In our model, type eưors occur when the
program tries to delete an instance which does
not exists or when the program tries to
instantiate a component X but there is no
declaration o f X. We will prove that these two
situations will not happen. Besides, we will
prove an additional important property which
guarantees that a well-typed program will not
create more instances than a maximum stated in
its type, and the maximum is sharp.

Our proof o f the type soundness is based on
the approach o f W right and Felleisen [10]. We
will prove two main lemmas: Preservation and
Progress. The first lemma states that well-
typedness is preserved under reduction. The
latter guarantees that well-typed programs
cannot get stuck, that is, move to a nonterminal
state, from which it cannot move to another
state. First we need to define what a well-typed
configuration means.

D efinition 4.1. (W ell-typed configuration).

Configuration T = {M ị, E ị) o ... o {Mn, E„) is

well-typed with respect to a basis r , notation

r N X ỉ/ fo r h = L .n there exists Z/, such that

r r- ú ỉ ì l Ị ỊT|̂ ! ' rGt5;;(/ỉ - I) n

where

rets.;i/;} = \ M ị , - ret5_’(/i - Ì) ~ Z ' l

Note that we have simplified the definition
o f rets for trivial cases that vetsj{k) = 0 for
k > n.

The two standard lemmas for soundness
property are stated as follows.

Honn^ A . Truong / V N U journal o f Science, Natural Sciences and Technology/ 24 (2008) 82-91 89

L em m a 4.2. (Preservation). ĩ f r ị ^ T and T

T \ t h e n r > T ’

L em m a 4.3. (Progress). J f r \ = T , ihen either T

is term inated or there exists a configuration T ’

such that T ^ T'.

Next, we show an invariant which allows us
to infer the resource bounds o f well-typed
programs. The invariant is about the
monotonicity o f the maximum number of

instances that a w e ll-ty p ed configuration T =

{Ml, £)} 0...0 (A/n, ^n) can reach. We calculate
the maximum number as follows.

} I
m3xins(Tl = I J m axinsịT./;)

Í, - 1

Where

m axínsiT ./í} = [7 :i,] • A’/, • reto,;{/j - I }

re to .;(/0 = \}ỈI: ■ re to .;(/i - 1} - -VJ'; '

Where Xf, IS the type o f E/,. During
transition, this maximum number o f instances
that the configuration can generate does not
increase. Furthermore, when the maximum is
not reach for some component, there exists a
next configuration such that the maximum is
the same. This allows us to prove the sharpness
o f the type system.

Lem m a 4.4. (Invariant o f maxins). I f Y \ = T

a n d T -V/-* T ’, then

• maxins (T) 3 maxins (T ’)

• ^ rnaxins(T)(z) fo r some z,

then there exists T" such that T T"

and maxins(T) = maxins(T")

Now we can state the type soundness
together with the upper bound o f instances that
a welltyped program always respects.

T heorem 4.5. (Soundness). Let Prog = Decls;
E be well-typed, that is, r \- E :X fo r some

reordering r o f Deals and some type X. Then

fo r any T such that ([], E) T we have that

T is not stuck and [T] c X .

4.2. Termination and sharpness

Before presenting the sharpness property,
we need to show that any welltyped program
tenninates in a finite number o f steps. The
common tool for proving the termination o f
programs (cf. [11, 5]) is to find a termination
function which maps program states to a well-
founded set. A well-founded set is a set s with
an ordering > on elements o f s such that there
can be no infinite descending sequences o f
elements. We choose the set o f natural numbers
N and the usual ordering > to be a well-founded
set (N,>). The termination function mts is
defined for expressions and for configurations
as follows.

0 . i f /-: = r

1. ii' E — d e l .1'

1 - m ts i'.l) . i r / ỉ = n e v .r . . r —cA (z D ic l^

m ts (. l) - m ts ị l i} . if E = À B

'1 * m ts i. l). if E — (.1

1 - iu;Lx(mts{.-l}. i i 'E = (.1 B]

90 Hoang A . Truong / V N U journal o f Science, Natural Sciences and Technology 24 (2008) 82-91

The integers 0, 1 and 2 in the definition are
the coưesponding steps o f the operational

semantics. The function is defined for a stack T

= (M u E]) 0 . . .0 E„) as follows:

m

Here /2 - 1 is the num ber o f osPop steps.

Note that, if E is the main expression of a
w ell-ty p ed p ro g ra m , then mts(£) is the
maximum ữansition steps that the program
takes to terminate in any run, not all possible
runs o f the program because there may be an
exponential num ber o f such runs. The following
theorem guarantees the termination o f any well-
typed program.

T h eo ram 4.6. (Termination)

7. I f T N T and T 'N/-* T', then mts(7) > mts

(T ’)

2. A well-typed program always terminates
in a fin ite number o f steps.

Last, the sharpness o f the type system
shows that there is a run o f any welltyped
program such that the maximum number o f
instances reaches the bound expressed in pro
gram ’s type.

T heorem 4.7 (Sharpness). Let Prog = Decls; E
be welltyped, that is, Y h E : X fo r some

reordering r o f D ecls and some type X. Then
fo r any z 6 X , there exists a sequence o f

configurations ([],£)= To T] ... TTn

such that [T](z) = Xi{z).

4.3. Type inference

Type inference is similar to those in our
previous works [8, 9]. We have a polynomial

type inference algorithm that can infer the type
o f a program if there is one, and it reports
failure otherwise.

5. R elated w orks and conclusion

There are several other works on static and
analysis o f memory use. In [12,13] Chin et. Al.
presented a type system that can capture
memory bounds o f object-oriented programs.
He provided a framework in [13] for inferring
abstract size o f programs as exact as possible
(since they used Pres-burger formulae for size
information). Our language has an explicit
deallocation primitive and our computation o f
resource bounds is exact. Crary and Weirich

14] presented decidable type systems for low
level languages which are capable o f specifying
and certifying that their programs will terminate
within a given amount o f time, but the type
system does not infer any bounds given by
programmers. In contrast, out type systems
focus on high level languages and they can infer
the shaq) upper bounds o f resources, Hofmann

15] showed that linear type systems can ensure
that programs do not increase the size o f their
input so that exponential growth o f immediate
results can be avoided, even with the presence
o f iterated recursion. His languages are
functional while ours are imperative.

We have presented an absừact component
language that focuses on two primitives for
manipulating resources (allocation and
deallocation) and three composition operators:
sequencing, choice, and scope. These operators
are o f particular relevant to the dynamic
semantics o f the two prim itives for allocating
and freeing resources. Then we have developed
a static type system that can find the sharp
resource bounds o f a component program. The
type inference algorithm is polynomial as

Hoang A . Truong Ị V N U Ịo u rm l o f Science, Natural Sciences and Technology 24 (2008) 82-91 91

shown in our previous works. Due to space
limitations, proofs are not included here. We
plan to p rov ide a tech n ica l rep o rt th a t con ta ins
all proofs.

We have left out some features such as
loops, function calls, and recursions to simplify
the system. Adding finite loops and function
calls would not be difficult and would not cause
substantial changes to the type systems. We
plan to consider them in the future.

This work was partly supported by the
research project No. 204006 entitled “Modern
Methods for Building Intelligent Systems”
granted by the National IT Fundamental
Research Program o f Vietnam.

References

[1] c. Szypcrski, “Com ponent Software— Beyond
O bjcct- Oriented Programming”, Addison-W esley /
AC M Press, 2nd edition, 2002.

[2] T.L. Thai, H.Q. Lam, ‘‘N ET Framework Essentials”,
A Nutshell Handbook. O 'Reilly & Associates, Inc.,
3rd edition, Aug. 2003.

[3] H.p. Barcndregl, ‘‘Lambda Calculi with Types”,
Oxford Vnivertity Press Vol. 2 (1992) 117.

[4] L. Cardelli, “Type systems”, AC M Comput. Surv.,
28(1) (1996) 263.

[5] B.C. Pierce, editor, “Types and Programming
Languages” , M ỈT Press, 2002

[6] F. Nielson, H. R. Nielson, “Type and effcct systems”,
In Corrcct System Design, Recent Insight and
Advances, (to Hans Langmaack on the occasion o f
his retirement from his professorship at the

University o f Kiel), Springcr-Vcriag., London, UK,
(1999)114.

[7] F. Nielson., “Annotated type and efTect systems”,
ACM Comput. Surv, 28(2) (1996) 344.

[8] H. Truong, M. Bezem, “Finding resource bounds in
the presence o f explicit deallocation” , ỉn D. V. Hung
and M. Wirsing, editors, ĨCTAC, Lecture Notes in
Computer Science, Springer, Vol. 3722 (2005) 227.

[9] M. Bezem, H. Truong, “A type system for the safe in
stantiation o f components”. Electronic Notes in
Theoretical Computer Sciencey 97 (2004) 197.

[10] A.K. Wright, M. Felleisen, “A syntactic approach to
type soundness”, Information and Computation^
115(1) (1994) 38.

[11] N. Dershowitz, z . Manna, “Proving termination with
multiset orderings”, Communications o f the ACM,
22(8)(1979) 465.

[12] S. Q. Wei-Ngan Chin, Huu Hai Nguyen, M. Rinard,
“Memory usage verification for 0 0 programs”, ỉn c.
Hankin and Ĩ. Siveroni, editors. The Ỉ2ih
International Static Analysis Symposium (SAS'05),
London, UK, Sept. 2005.

[13] W.N. Chin, s .c . Khoo, “Calculating sized types”,
Higher-Order and Symbolic Computation^ 14(2-3)
(2001)261

[14] K. Crazy, D. Walker, G. M om sett, “Typed memory
management in a calculus o f capabilities”, In
P O P L '99: Proceedings o f the 26"' A CM SIGPLAN-
SỈG ACT symposium on Principles o f program m ing
languages,'New York, NY, USA, ACM Press (1999)
261

[15] M. Hofmann, “Linear types and non size-increasing
poly-nomial lime computation” . In LICS'99:
Proceedings o f the Ỉ4 ‘̂ Annual ĨEEE Symposium on
Logic in Computer Science, W ashington. DC, USA,
IEEE Computer Science, (1999) 464.

[16] A. Syropoulos, “M athematics o f m ultisets”. In WMF
'00: Proceedings o f the Workshop on Multiset

Processing, London, UK, SpringerVerlag (2001) 347.

