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A bstrac t, Chip Firing Games on (directed) graph are widely used in theoretical computer science 
and many other sciences. In this model, chips are fired from one vertex to all o f  its neighbors at the 
same time. The purpose o f our paper is to study an extended version o f this model, the Conflicting 
Chip Firing Game, by considering that chips can be fired from one vertex to one o f  its neighbors at 
each time. Our main results are obtained when the support graph o f  ứiis game is a rooted tree. In 
this case, we give the characterization o f its reachable configurations and o f  its fixed points. 
Moreover we show the local lattice structure of its configuration space.
Keywords'. Chip Firing Game, conflicting game, convergence, discrete dynamical system, 
evolution rule, fixed point, tree.

1. In troduction

A Chip Firing Game (CFG) [1,2] is defined 
on a directed (multi) graph as follows. A 
configuration o f the game is a distribution o f 
chips on the vertices o f the graph, and the 
evolution rule (firing a vertex) is defined by: a 
configuration can be transformed into another 
one by transfeưinga chipfrom one vertex along 
each o f its outgoing edges, if  it contains at least 
as many chips as its outgoing degree. The set o f 
all configurations reachable from the initial one 
is called configuration space, and a fix ed  point 
is a configuration from which the evolution rule 
can not be applied. Convergence conditions 
(involving the num ber o f chips or the structure

o f the graph) are given in [1-3] as well as 
different proofs o f the fact that the 
configuration space o f any convergent CFG is a 
lattice. See Figure 1 for an example.

CFGs are widely used in theoretical 
computer science, in physics and in economics. 
For example, CFGs model distributed behaviors 
(such as dynamical distribution o f jobs over a 
network [4,5]), combinatorial objects (such as 
integer partitions [6-9], dollar game [10,11] and 
other [12]). In physics, it is mainly studied as a 
paradigm for the so called S e lf Organized 
Criticality, an important area o f  research [IS
IS], It is also proved in [16] that infinite CFGs 
are Turing complete, which shows the potential 
complexity o f  their behaviors.
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Fig. I. The configuration space o f a CFG with 9 chips. The weight o f each vertex is indicated, and the shaded
vertices are the ones which can be fired.

We observe that in CFGs, the condition for 
firing a vertex is quite strict: this vertex must 
contain at least as many chips as its outgoing 
degree. However, in many mode!, for example 
models in distributed systems [5] or in 
economics [11], chips can be fired from a 
vertex to one o f  its neighbors if  this verte:: has 
at least one chip. And in this case, chips are not 
transíeư ing to all neighbors of this vertex at the 
same time, but at different times. In order to 
modelize these systems, we investigate an 
extended version o f CFG, by considering that a 
configuration can be transformed into another 
one by transfem ng chips from one vertex along 
one o f its outgoing edges. However, the firing 
o f  a chip along one edge may cause a conflict 
with the one along another edge. Hence we call 
our model ‘'Conflicting Chip Firing Game” 
(CCFG).

Further, we constate that, in this new 
model, by relaxing the condition about the 
number o f chips in a vertex, the evolution rule 
is much more flexible. In other side, the 
obtained configuration space has not the lattice 
structure, and the convergence properties. This 
situation is illustrated at the end o f  Section 2. 
Moreover, we note that it is more difficult to 
find a support graph which has good properties 
in CCFG model than in CFG model.

In Section 3, we consider a particular but 
important case o f CCFGs, where the support 
graph is a rooted tree. We characterize the 
reachable configurations and fixed points o f the 
model. At the end, we study the complexity as 
well as the local lattice structure o f the 
configuration space.

Before entering in the core o f  this paper, 
letus give here some preHminary notations o f 
order and lattice theory. A binary relation ^  
over a set p  is said to be an order if it is 
reflex ive, tran sitiv e  and  an ti-sym m etric . T he set 
p together with the relation ^  is then called a 
partially ordered set, or simply a poset. A poset 
L is a lattice if  any two elements X and y  o f  L 
have a greatest lower bound, called the infimum 
o f X and y  and denoted by inj{x, y ), anda 
smallest greater bound, called the supremum of 
X and y and denoted by sup{x, ỳ). The study of 
lattices is an important part o f order theory, and 
many results about them exist. In particular, 
various classes o f lattices have been defined and 
appear in computer science, mathematics, 
physics, social sciences, and others. For more 
details about orders and lattices, we refer to 
[17].
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2. The general model conflicting chip firing 
gam es

In this section after giving the definition of 
the model Conflicting Chip Firing Games 
(CCFG), we investigate the relation between its 
configurations.

Let G = (K c) be a (weighted) directed 
graph where V = {1,2,.../«} being the set of 
vertices o f G, E  = V X being the
set o f edges of Ơ, and the capacity function  c 
being a function from E to N. A CCFG  on Ơ = 
{V, E, c) {G is called the support or the base of 
the game) with n chips is defined as follows. A 
configuration a = {ƠỊ, Gi,..., Oni) o f the game is a 
distribution o f n chips into V, where the weight 
Qi associated with each vertex i can be regarded 
as the number o f  chips stored at the vertex i. 
The evolution rule, callcd also transition rule or 
firing rule is the following: an edge {i,j)  can be 
fired if the vertex / contains at least c { i j )  chips, 
and the firing o f this edge is the transferring o f 
c{i,j)  chips from vertex / to vertex j .  Moreover, 
a firing  sequeĩĩce is a sequence o f firings.

Let G be a support graph, and let Ơ be a 
configuration , w e call configuration space, and  
we denote by CCFG{G,0), the set o f all 
configurations reachable from the initial 
configuration  o .  O n th is set, w e define the 
following relation: a ^  b '\ĩ b can be obtained 
from a by applying a sequence o f firings.

In order to describe the evolution o f a 
CCFG  on graph Ơ, we introduce the evolution 
matrix M(G) as follows: M(G) = {agi)pxm where 

(resp. a^i= -c(tg)) if  i is the going out 
(resp. going in) vertex o f edge tg, and ữgị = 0 
otherwise. Denote by e[q] the unit /»-parts 
vector, where the position q is equal to 1, and 
the others are equal to 0. We constate that if 
configuration b is obtained from configuration  a

by firing edge tq th en  Ồ = e[q\ X M . F u rther,

let c = ) be a firing  sequence from  a

to b where the edges are subsequently

fired. We define the shot vector o f  c  being the 
vector k{C) = {ki,...,kp) where is the number 
o f  o ccu ư e n ce s  o f  tg in c .  T he  fo llo w in g  resu lt is 
direct from the above definitions:

Proposition I: Let c  be a firing sequence 
from a to Ồ, then we have: k{C) X  M{G).

Let us give in Figure 2 a small example of 
this game. From this figure, we see that 
configuration  (1, 2, 6) IS o b ta in ed  from  (3, 4 , 2) 

by the sequence c  = iitihU hhhU - So the shot 
vector o f c  is (2, 2, 2 , 2).

Moreover, from this small example, we can 
observe that in consfrat w ith the case o f  the 
classical CFG, a CCFG  may have cycles (firing 
sequences come from a configuration and come 
back to itself) and have many fixed points. 
Therefore, it has not a lattice structure. 
However, in some cases where the support 
graph has some “good” properties, this structure 
is maintained. In the next section, we study 
such a particular (and im portant) class o f 
CCFG.

3. CCFG  on a tree

The purpose o f this section is to investigate a 
class o f CCFG  whose the support graph is a 
rooted tree with edges directed from nodes to 
their children. We show a characterization for 
reachable configurations and for fixed points o f 
this game. This allows us to describe the 
complexity o f the game by giving the 
cardinality o f its configuration space. We also 
prove the local lattice structure o f this space.
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Firầt o f  all, we 
preliminary definitions.

Definition I\ Let r  = (F, be a rooted 
ừee with V = {7, ... , «}, a node is a vertex o f 
r ,  a le a f  is a node having no child, and the 
depth o f  a node V, denoted by d{v), is the 
length o f  the unique path from the root to V.

Definition 2: Let // be a positive integer 
and let 5  be a set w ith \s\ = k. A  composition 
o f  n into s  is an ordered sequence (a/, Ơ2, 
a*) o f  non negative integers such that ay + +
... -r a* -  /Ỉ. The integer ãị is called the weight 
o f  i.

N ext, w e d e fin e  fo r each  com p o sitio n  a  o f  
n into F, the horizontal energy as follows:

Definition 3: Let T = (K  E) he z rooted 
ừee and let Ơ = (a/, a,ri) be a composition o f 
n into V. The horizontal energy a) at node
i o f a is the quality ữịdỢ). And the horizontal 
energy o f  a is the quality 
e„ (a) =  { i , a ) .

Now, the CCFG  on T  with n chips, 
denoted by CCFG(T,n), is defined as follows:

•  E ach  c o n fig u ra tio n  is a com p o sitio n  o f  n
into V:

Fig. 2. Some configurations of a CCFG with 9 chips, 

present here some • In the initial configuration Ũ, all n ch ips

are centered at the root, and there is no chip 
at other nodes;

•  Evolution rule: the node i can give one chip 
to the node j ,  one o f  its children, if  i has at 
least one chip.

We denote also the configuration space of 
this game by CCFG(T, ri), and we write b < a 
i f  b can be obtained from a  by a firing 
sequence. In particular, we write a —* b i ĩ  b \s 
obtained from a by applying once evolution 
rule. It is clear that efẶjb) = e//{a) -  1. This 
implies the following result.

Lemma 1: The configuration space
CCFG(T, n) has no cycle and consequently it 
is stationary. M oreover, the set CCFG(T, n) 
equipped with the relation < is a poset.

Figure 3 shows an example o f a CCFG  on 
a tree o f 5 nodes with 2 chips.

In the next propositions, we give a 
characterization o f configurations o f 
CCFG(T,n) as well as its fixed points.
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Fig. 3. The configuration space of a CCFG on tree.

Proposition 2: The set CCFG(T,n) is 
exactly the set o f  compositions o f n into V. 
Consequently, CCFG(T,n) has exactly

X/ + X2 + ... + Xm = n. Hence it is n + m -  \ 

m - 1

n +  w -  1 

m - \
configurations.

Proof. Let a = {a I ,  a 2,... be a
composition o f n into V. It is clear that if enia) 
= 0 then a have no chips at any node but the 
root o f r ,  that means a is nothing but Ỡ. In the 

case e/ỉ(a) > 0 , we prove that there exists a 
firing sequence from the initial configuration Ơ  

to  a. F o r that, it is su ffic ien t to  show  that there 

exists a composition a ’ 0 Ĩ n into V such that a ' 
a and e ^ a ’) < eii{a). Because e//(a) > 0, 

there exists a node i such that a, > 0. Let j  be the 
father o f  i. We consider the composition a ' 
obtained form a by increasing aj by 1 and by 
decreasing aị by 1. It is easy to check that a ’ is a 
composition o f  ĨĨ into V satisfying a and 
e Ị ỉ(a ')  = eu(a) - I.

This result implies that the number o f 
configurations o f CCFG{T,n) is the number o f 
non-negative integer solutions o f the equation

The proof is completed.

Then the following result is sfraightforward:

Corollary 1: The fixed points o f  CCFG{T,n) 
are compositions o f n into the set o f  leaves o f  r . 
Consequently, the num ber o f  fixed points o f
CCFG (T,n) is Í/Í +  / - I  

/ - 1
where I is the number

o f leaves o f T.

In the previous section, while studying the 
general model CCFG, we show a necessary 
condition by shot vector for two configurations 
to be comparable. However, we have not yet 
given any sufficient condition for this. In 
consfrat, withthe support graph beinga tree, we 
can describe explicitely the order between 
configurations by introducing the following 
notation o f vertical energy.

Definition 4: Let r  = (F, £ )  be a rooted tree 
and let a = be a com position o f n into
V. The vertical energy Cy{i,a) at node i o f a is 
equal to the number o f  chips in the subtree o f  T
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roo ted  at i. A nd  the vertical energy  o f  a is the 

quality ey{a) = Y , ,^ y e ,[ i ,a ) .

We observe that €ị{a) = eiẶ^a). Moreover, if 
the node i has children if, Ỉ2,... ,ifc then ẽị{i,a)= 
ey{ÌỊ, a) + e ^ Ì 2, a) + ... + ey(ik, a) + ơị. 
Therefore, each configuration is determined 
uniquely by their vertical energies at all nodes 
o f  the support tree.

We can now state our result on the order of 
CCFG  on tree:

Theorem 1 : Let a and b be two
configurations o f CCFG{T, n). Then a ^  Ố in 
CCFG{T, n) if  and only if  ey(i, a) ^  €y(i, b) for 
all nodes i o f  T.

Proof. First, we prove the necessary 
condition. It is sufficient to prove the statement 
for the case a b. Assume that b is obtained a 
by transíeưing one chip from node i to j .  Then 
ai = bi for all / ^  i, j .  Let Ấ: be a node o f T . l ĩ k Ỷ  
j \  then the subtree o f T  rooted at k  contains 
either both i, j  or none o f them. So ey(k, a) = 
ey(k, b). \ ĩ  k = y, then ey(j, a) = ey(j, b)- 1. 
Therefore, Cịịk, a) ^  ey{k, b) for all nodes k  
o f  r.

Conversely, we prove the sufficient 
condition for showing that there exists a firing 
sequence from a to b. It is clear that if  6 \{i, a) ^  
e^{i, b) for all nodes i then a == b. For other 
cases, we remark that there exists a node i such 
that ey {i, a) < eiẨ̂ i, b) and ẽị,{k, a) = €y{k, b) for 
all nodes tk  o f the subtree rooted at t. This 
implies that a-i < bị. Let j  be the father o f /. Let c 
be the composition o f n into V obtained from b 
by increasing bj by 1 and by decreasing bi b y  1. 
It is easy to see that c b. So, by using the 
necessary condition, we have 6 ỳ{ỉ, c) = Cịịi, b)
-  1 and ey{k, c)=  ey{k, b) for all nodes k Ỷ i. 
Hence, ev{K c) ^  ey{k, a) for all nodes k o f T. 
So by recurrence we also obtain an inverse 
firing sequence from b back to a. This 
completes the proof.

To finish this section, we investigate the 
structure o f  CCFG  on tree. Let us recall that, in 
the classical model CFG, the configuration 
space has a lattice sữTicture with a unique fixed 
point. Unfortunately, in the general CCFG, 
there are many fixed points in the configuration 
space and the structure o f this space is quite 
complicate. Nervertheless, in the case the 
support o f  a CCFG  is a rooted ừee, we can 
prove the local lattice structure. Let us first 
recall that for any two elements a  ^  Ồ in a 
poset, the interval [b,a\ is the set o f all elements 
c suchthat a ^  c ^  Ố.

Theorem 2\ Let a  ^  6 be two
configurations o f CCFG(T,n). Then the interval 
b,a] is a graded lattice.

Proof. Since the interval [b,a\ has a mimimal 
element b, to prove its lattice structure it is 
sufficient to prove that for any two elements c,d 
G [b,a\, there exists sup{c,d) (see [17]). To find 
this supremum, we first compute its vertical 
energies as follows. Put e, = min{ey{i,c), 
ei{i,d)}  fo r every  node  i o f  V. It is c lea r that 6 ị = 
n. In addition, if  i has children //, /2,...,4  then

e. + ... +  e.'I h k
= min{e^ (/, , c \ e y { i , , d ) ] + ... + m in {cy (jj , c \  Cy [ i k , d )}

... + ey{i,^,c\ey{i^,d)+... + Cy (/*, d )

< m . \ n { e y { i , c ) , e y { i , d ) ]  =  e . .

Now, let us define the following sequence 
o f non-negative integers: g  = (gi,g2. . . . ,g j  
w here g .  = g .  -  (g . +  g .  + . . .  +  ). It IS

clear that this sequence is a composition o f n 
into V, that means g  is a configuration o f T. 
Furthermore, g  has vertical energies 6 ị, 62 ,..., 
e„j. So by using Theorem 1, we have g  ^  c and 
g  ^  d. On the o th er hand, let / 2  be a 

configuration o f CCFG{T,n) satisfying h ỈÍ c,d. 
We have ey{i, h) ^ eỉẨ̂ i, c) and ey{i, h) ^  e^(z, d) 
for all nodes i o f T, this implies that 6 y(i, h) ^
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m inịeự{ỉ.cịei{ỉ,(ỉ)}=  e^i,g ). Hence g  h. This 
p ro v es that g  is the  suprem um  o f  c and  d.

Finally, we remark that the horizontal 
energy is reduced by exactly 1 after once 
applying the evolution rule. So the lattice [b,a] 
is graded.

The following corollary is straightforward 
from the graded propertyn o f the lattice.

Corollary 2: In the CCFG{T,n) we have;

i) The maximal length o f a firing sequence from 
the initial configuration to one fixed point is

max {<:/(/) .
leT

ii) T h e  m in im al leng th  o f  a firing  sequence 
from the initial configuration to one fixed point
IS

Ì€Ĩ

R eferences

|1| A. B ’omcr, L. Lov'asz, w. Shor, “Chip-firing games 
on graphcs", E J. Combinatorics 12 (1991) 283.

[2] A. Bjorncr, L. Lov'asz. ‘'Chip firing games on 
directed graphcs” , Journal o f  Algebraic 
Combinatorics 1 (1992)305.

[3] M. Latapy, H.D. Phan, “The latticc structure o f chip 
firing games'', Phvsica Z) 115 (2001) 69.

[4] S.-T. Huang, ' ‘Leader election in uniform rings”, 
AC M  Trans, Programming Languages Systems 15 (3) 
(1993) 563.

[5] J. Dcscl, E. Kindlcr, T. Vesper, R. Waiter, '*A 
simplified proof for the self-stabilizing protocol* A 
game o f cards” . Information Processing Letters 54 
(1995) 327.

[6] E. Goles, M.A. Kiwi, “Games on line graphcs and 
sand piles” , Theoret. Comput. Set; 115 (1993) 321.

[7] E. Golcs, M. Latapy, c . Magnien, M. Morvan, H.D.
Phan, “Sandpilc models and lattices: a
comprehensive survey”, Theoret. Comput. Sci., 2001. 
To appear.

[8] E. Golcs, M. Morvan, H.D. Phan, “The structure o f 
linear chip firing game and related models”, Theoret. 
Compui. S c i, 270 (2002) 827.

[9] c . Magnien, H.D. Phan, L. Vuilion, “An extension o f 
the model o f chip firing game”, Discrete Math. 
Theoret. Comput. Sci., AA (2001) 229.

[10] N. Biggs, “Algebraic potential theory on graphs'’, 
Bull. London math. Soc., 29 (1997) 641.

[1Ỉ] N. Biggs, “Chip firing and the critical group on a 
graph”. Journal o f  Algebraic Combinatorics 9 (1999) 
25.

[12] D. Rossin, R. Cori, “On the sandpilc group o f dual 
graphs” , European Journal o f  Combinatorics 21
(2000) 447.

[13] P. Bak, c .  Tang, K. Wiesenfeld, "Self- 
organizedcriticality: An explanation o f  1/f noise” , 
Physics Review Latters 59 (1987) 381.

[14] M. Latapy, R. Mataci, M. Morvan, H.D. Phan, 
‘"Structure o f some sand piles model” , Theoret. 
Comput. S c i,  262 (2001) 525.

[15] c . Moore, M. Nilsson, “The computational 
complexity o f  sand piles” , Journal o f  Statistical 
Physics 96 {\999) 105.

[16] E. Goles, M. M argenstcm, “ Universality o f  chip 
firing game'’, Theoretical Computer Science, 172 
(1997) 121.

[17] B.A. Davcyand H.A. Priestley, “Introduction to 
Lattices and Order”, Cambridge UniversUyPress, 
1990.


