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A bstract. We propose the moving parabolic approximation (MPA) model to reconstruct an 
improved point-based surface implied by an unorganized point cloud, while also estimating the 
differential properties o f  the underlying surface. We present examples which show that our 
reconstructions o f the surface, and estimates o f normal and curvature information, are accurate for 
precise point clouds and robust in the presence o f noise. As an application, our proposed model is 
used to generate ưiangular meshes approximating point clouds.

1. Introduction

Acquiring large amounts o f  point data from 
real objects has become more convenient 
because of modem  sensing technologies and 
digital scanning devices. However, the data 
acquired is usually distorted by noise, arising 
out o f physical m easurement processes, and by 
the limitations o f  the acquisition technologies. 
Even so, it is possible to obtain the smooth 
underlying shapes which are implied by an 
unstructured point cloud. Consequently, 
techniques o f  reconstructing models from noisy 
data sets are receiving increasing attention. 
Point-based surfaces [ 1 -3 ] have recently 
become an appealing shape representation in 
computer graphics and can be used for
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geometric modeling [4]. The point-based 
representation o f a surface should be as 
compact as possible, meaning that it is neither 
noisy nor redundant. It is therefore important to 
develop algorithms which generate compact 
point sets from nonuniform and noisy input, so 
as effectively to reconstruct the underlying 
surfaces. It should also be possible to recover 
the intrinsic geometric properties o f the 
underlying surfaces as precisely as possible 
from point clouds.

Differential quantities such as normals, 
principal curvatures, and principal directions o f 
curvature can be used for a variety o f  tasks in 
computer graphics, computer vision, computer- 
aided design, geometric modeling, 
computational geometry, and industrial and 
biomedical engineering. A num ber o f methods 
for curvature estimation have been published by
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various communities, but mostly for manifold 
representations o f the surface such as
polyhedral meshes, or oriented data sets such as 
points paired with normals. We would like to 
recover the differential properties o f an
underlying surface directly from an 
unstructured point cloud, even though it may be 
nonunifonn and noisy. Our approach, motivated 
by some recent work o f Levin [2], is based on 
local maps o f differential geometry [5] and 
practical algoriửims m optimization theory [6], The 
main conừibutìon of this work is a scheme to 
generate a pomt-based reconstruction o f an 
unorganized point cloud and simultaneously to 
estimate the differential properties of the
underlymg surface. As an application, we will used 
the proposed technique to reconstruct friangular 
meshes approximating given pomt clouds.

2. Moving parabolic approximation

Recently, there has been increasing interest 
expressed in surface modeling using 
unorganized data points. A powerful approach 
is the use o f  the moving least-squares (MLS) 
technique [2] for modeling point-based surfaces 
[1]. One o f  the main strengths o f MLS 
projection is its ability to handle noisy data. We 
extend the MLS technique to a moving 
parabolic approximation (MPA), which is a 
model o f  a second-order projection. The MPA 
model is naturally framed as an optimization 
problem based on the following proposition:

P roposition  1: At every point p on a 
surface s , there exists an osculating paraboloid 
s '  such that the normal curvature o f  s ‘ is 

identical to that o f 5  at p for any tangent vector.

2.J. MPA model

Suppose ứiat a given set o f data points Ị"^

is noisy samplmg of an underlying surface s. 
Generally, pj will not lie on ửie underlying shape s

due to noise. We first define a neighborhood of the 
given point cloud in the fonn:

i | x - p j | < r }
;=1

With an assumption 

r  >  max min p, -  p,

( 1 )

(2)
w e ensure that the neighborhood ^ r )  contains 

the underlying surface as well as the 
approximation that we are going to construct. A 
number o f points in this neighborhood are 
chosen for reference, called reference points, 
which will be projected on to the underlying 
surface using MPA models.

Let X G jS(r) be a refe rence  po in t in the

close neighborhood o f the given data points. 
The foot-point o f X  on the underlying surface s 
is denoted as

+ (3)

where n is the unit normal to s ,  and is the 

signed  d istance  from  X to Ox along  n. W e aim  to 
compute the foot-point Ox and the differential 
quantities at the foot-point. Let (ti(n), t 2(n)}be 
the perpendicular unit basis vectors o f  the 
tangent plane, so that {Ox; ti, Í2, n} forms a local 
orthogonal coordinate system. Writing =  Py -  

X, we fonnulate the moving parabolic 
approximation model as a constrained 
optimization:

m in / (n, a, b,c) = ị ^  [q[n -

(4)

where (n,(,,a,b,c) are decision variables and p IS 
a scale parameter.

Once the optimum solution (n ’,^ ,a ,b ,c )of 
the MPA model o f Equation (4) has been 
obtained, we can recover the differential 
quantities o f the underlying surface s at the



Zhoimmng Ynnv,, Tne-wan Kim / V N U  Journal o f Science, Natural Sciences and Technology 24 (2008) 179-185 181

foot-point 0.J =  X +  c,*n\ including the principal 
curvatures and the principal directions o f 
curvature. An osculating paraboloid o f the 
underlying surface at Ox can then be represented 
by the parametric expression

_  r 1 , .......................................................................

s ’{u,v)= u,v, — [a'U' + 2 b ’uv + c ’v^)  , (5)
V  2  y

in the local coordinate system {o ;̂ t ’ , t ’ ,n*}. 

The first fundamental form o f S(u ,v )  is given by

/■ =  Edu^ + I F d u d v  +  G á v \  (6)

where E = \ , F  =0 and Ơ =1 at the foot-point Ox- 

The second fonn o f S ‘(u,v) is given by

I I '  = Ldu^ +  I M d v d v  +  N d v \  (7)

where L = a , M  = b '  and N  = c .  The mean

curvature / / 'a n d  the Gaussian curvature AT'can 
now be calculated as follows:

_ L G - 2 M F + N E  _ a  + c  

"  =  2(e G ~ F - ]

L N - M * * 1̂2 
=  a  c  - b  .

E G - F ^

From this calculation and Proposition 1, 
we obtain the minimum and maximum 
principal curvatures o f the underlying surface 
S a t  0 :̂

(9)

and the corresponding principal directions o f 
curvature in the tangent plane: 

e L  =  = Ì2 ,iK an = á  < c  =  <

e...=liuii

b tị + K . — a^min ( 10)
+ h

S 'L  - c ' ) (  +Ố'Í2

The principal directions and are 

always orthogonal to each other except at the 
umbilical points. At an umbilic, 

holds, and the surface is locally part 

o f sphere with a radius o f 1/H*. In the special 
case where the identical principal curvatures 
vanish, the surface becomes locally Hat.

2.2. Implementation and examples

The MPA model o f Equation (4) is a 
constrained optimization problem. We solve 
this constrained optimization by a practical 
algorithm based on Lagrange-Newton method
[6]. We implement our MPA approach and 
perfonn it on a number o f point clouds.

The moving parabolic approximation model 
was tested on several different shapes o f  
surface. Each shape is a graph of a bivariate 
function defined over [-1,1] X [-1,1] and 
evaluated using a 41 X 41 grid.

[ x „ y , )  = { - \  + H 2 0 ,-1  + k /2 0 ), k=Ồ^. . . ,40,

to determine a set o f  clean points that lie on the 
graph:

'Pcie.n =  [ { ^ 1  {x, , y , ) f  \l,k = 0, . . . , 40

In order to verify the stability o f  the 
algorithm, we generated a point cloud noise by 
adding Gaussian noise with a magnitude o f 1% 
o f the overall cloud dimension to clean data. 
The four test surfaces were a sphere

{ x , y , z Ỵ  = [ x , y , ^ l 4 - x ^  -  ) , a cylinder

{ x , y , z Ỵ  = { x , y , ^ J 2 -  , a paraboloid

{ x , y , z Ỵ  =^(x , y , x^  + y ^ Ỵ , and a

hyperboloid { x , y , z Ỵ  = { x , y , x ^  -  y ' J . The

estimated curvature information obtained from 
MPA model was compared with the exact 
curvatures in each case. We measured the
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difference in terms o f root-mean-square (RMS) 
error, which we define as

E r r  = - ẳ ( » r - v < r ,  (11)
V /=1

where vaư"  represents one o f  the estimated 

values k“ „. C . .  I f "  “  K"'. and

va /“  represents one o f  the exact values 

k“ „, or IC"". Table I summarizes
the RMS eưors that occurred in the 
estimation o f  principal, mean and Gaussian 
curvatures. From which, we observe that 
our M PA algorithm can obtain robust and 
accurate estimates in the presence o f  noise 
as w ell as for clean data.

We also applied the MPA algorithm to the 
scanning data set o f a mouse which contains 
36036 points, and presented the point-based 
reconstruction and the estimates o f curvature in 
Figure 1. The results show the confidence of 
our MPA method for reverse engineering 
applications.

Table 1. RMS errors in curvature estimation for the 
test surfaces

E x a m p l e K r r ( K „ „ J  E r r ( K , _ ) E r r C / / ) E r r CK^

S p h e r e
0 . 0 0 2 8 0 . 0 0 1 4 0 . 0 0 1 9 0 . 0 0 1 9

( c l e a n  d a t a )  

( w i t h  1 %  n o i s e )
0 . 0 4 1 2 0 . 0 2 6 4 0 . 0 2 3 3 0 . 0 2 3 8

C y l i n d e r
0 . 0 0 3 8 3 . 5 e - 0 7 0 . 0 0 1 9 2 . 5 e 0 7

( d e a n  d a t a )  

( w i t h  1 %  n o i s e )
0 . 0 7 4 7 0 . 0 2 8 1 0 . 0 4 4 6 0 . 0 2 1 5

P a r a b o l o i d
0 . 0 1 4 4 0 . 0 1 8 8 0 . 0 1 5 8 0 . 0 2 8 7

( c l e a n  d a t a )  

( w i t h  1 %  n o i s e )

0 . 0 9 5 7 0 . 1 0 7 5 0 . 0 8 8 5 0 . 1 8 2 8

H y p e r b o l o i d
0 . 0 1 1 7 0 . 0 0 1 7 0 . 0 0 2 8 0 . 0 1 3 8

( d e a n  d a t a )  

( w i t h  1  %  n o i s e )
0 . 1 2 7 8 0 . 1 2 9 7 0 . 0 6 8 4 0 . 1 5 0 5

(a) scanning ddtii ựKHiì is (b) pDÌiit-bascd rcvo»>ỉruc(ion

<c) IcMurc m ap  a f  csiiriw icd iiK-an cunaU Jfcs

(d ) tcxiurc n iap  o f  CNiimalcd (iau>Mun c u r\a iu rc s

Fig. 1. Applying the MPA algorithm 
to the Mouse model.

3. Mesh reconstruction

As an application, our MPA model is used 
to generate a triangular mesh that approximates 
the underlying surface o f given point cloud. 
Our method o f mesh reconstruction from point 
clouds by moving parabolic approximation can 
be outlined in the following scheme.

1. A rough initial mesh is
consừucted from given point cloud
V  =  Ịp  c  . Let be the

initial set o f new inserting vertices.
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2. Repeatedly apply the steps o f curvature- 
based refinement (a-b-c) until the 
approximation error is within a predefined 
tolerance or the maximal number o f times 
is reached:
a. For each e  we project it on to 

the underlying surface o f the point cloud 
p  using the MPA algorithm, and get the 
estimate o f mean curvature vector K;c(v)
at the projection V = MPA(v^). After 
projection, the set o f  potential vertices is 
denoted by

V P o ten tia l V v '' G K ^ '^ a n d  K r . w  ) o

b. Calculate the mean curvature normal 
K m (v) via the differential geometry 

operator [7], and define

K ^ ( v ) _ K ^ ( v ) ) £  K^(V) }

as the collection o f active vertices, 
c. Insert a new vertex at the midpoint o f 

every edge adjacent to any V ị  ^
and then renew

y N i - w  _  | y ^  _  V G

and VV,- G £  }. The approximating mesh 
is updated by adding the topological

connections for those new inserting 
vertices.

3. Output the resulting mesh ytY= (V, E) as 
the final approximation to the input point 
cloud P.

Figures 2 to 4 show the meshes 
reconstructed from given point clouds using our 
MPA algorithm.

u )  the  data  p tiin u fh ) tin: initial

Fig. 2. Mesh reconstruction for the Knot model

(a) the data points (b) the initial mesh
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(c) the mesh after one iteration (d) the mesh after two iterations 

Fig. 3. Mesh reconstruction for the Horse model.

(a) the data points (b) the initial mesh

(c) the mesh after one iteration (d) the mesh after two itenrations 

Fig. 4. Mesh reconstruction for the Sculptiưe model.
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4. Conclusion
the INUS Technology Inc for providing 
scanning data points o f the Mouse model.

We have shown how to construct an 
improved point-based representation from a 
point cloud, at the same time as computing the 
normals and curvatures of the underlying shape. 
Our algorithm is based on optimization theory 
and works robustly in the presence o f noise, 
while yielding accurate estimates for clean data. 
The effectiveness o f the algorithm has been 
demonstrated in the reconstruction o f point 
clouds obtained by sampling several different 
surfaces, including a sphere, a cylinder, a 
paraboloid and a hyperboloid.

As an application, we use the MPA 
algorithm to construct a triangular mesh 
approximating the underlying surface o f a given 
point cloud. We expect that our MPA method 
will find further applications in many 
operations on point-based surfaces, such as 
smoothing, simplification, segmentation, 
feature extraction, global registration.
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