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1. Abst.

This paper introduces axiom schemes for binary search trees. Inference rules for binary scarch
trees are specified. A prove of a thecorem which shows that cach trec can be uniquely
transformed into an optimal tree by using the axiom schemes and the rules of inferences are
introduced in this paper.

2. Introduction

The notion of a search tree plays an important role in computer science, especially in the

theory of data Istructures. For that reason we can find many papers concerned with the theory of
search trees in the literature. We noticed that, above all, questions of the optimal construction
and inductive generation of search trees and studied, where equivalent transformations of search
trees are offen used [1,2,3,4,5,6].

In this paper we will give the fundamentals of such theory and optimization problem for the
set of onc-dimensional binary search trees with infomations in their leafs.

3. One-dimer:ionnal binary search trees.

Let D and be the set of documents and the set of the nonegative integers. Let the symbols

/</>1/ v not he in the set D u K. tis the empty tree. We denote DY : = D u {t). Now we define
the set TREE of all one- dimensionnal binary search trees with informations in leafs as follows :

Definition |

1. d is a tree for vrery d € DY k
2,10 T} and Ty are trees and k € K, then KT}, Ty>or /\
is u tree R T3

K is the set of keys of the set TREE of all one-dimensionnal binary scarch trees informations
in theri leafs (Definition 1 ). We define the RESULT (T, () of scarching in the tree T € TREE
with the key £ € K by

Definition 2

1. RESULT (d, £): = d for every d € D*

49



2. RESULT (h<T},Tp>£): = RESULT (T, /) if {<k
Ki SULT h<T|,Tp>£): = RESULT (T, /1 if €>k
The base of the following investigation is the deiinition of equivalcice of trees of TREE. In the
sense of retrieval theory another equivalent relativn for trees is relevant.
Definition 3
Let Ty and Ty be trees of the sct TREE. Ty is equivalent to Ty (T = Tp) if and only if for
cvery 1 €K the equation
RESULT (Ty,#) = RESULT (T, ¢ ) holds.
In the following by Ty = Ty (T} = Tp) we denote that the tree Ty is cqualily (inequality) to
the tree Tp.

4. Derivability for formal equations of the set TREE

Let=be a new primitive symbol. We define the set EQU of formal cquation for trees of the
set TREE by.

<equation> : = <tree> = <tree>.

First we introduce a suitable notion of derivability for formal equations of the set EQU. Let
be X ¢ EQU and Ty = T € EQU.

Definition 4

Ty = Ty is derivable from X (X} Ty = Ty if and only if T =Ty € X or T|=T; can be
constructed in a finite number of steps using elements of X by application of the following
clementary rulees inference:

RI.IUT e TREE then X } T=T

R2. If X | Ty =Ty, then X} Ty = Ty

R3.IFX}T) =Tyand X} Ty =Ty then X T} =T,

R4. If X} Tl = T1', then X} k<T1, , T2> = k<T1", T2>

RS, If X} Ty =Ty, then X} k<. Tp> = k<T, Tp'>

Now we formulate the syntactic theorem of replicement
Theorem 1

For ¢every Ty, T, Tgg, Ty of TREE holds if Ty is the result of a simultancous replacement

of the tree Tg by the tree at some places in Ty, then : X} T = Ty, then X} Ty = Tp.

Proof. Induction on the complexity of the tree Ty.

5. Axiom system (AX) of the set TREE.

The problem of axiomatizing the equivalent relation is fundamental for applications in
practice. We define the axiom system AX of the set TREE as follows AX:=ux} u axp u axy u

axg, where we define axi (i=1,2,3,4) as follows:



Axiom scheme ax) _ i
For each T}, Ty , T3 of TREE, and /\ /\
K T3

, k' € K the following formal equation T Ts

< k'< Ty, Tp>, T3> = k< Ty, T3> or /\

s an axiom if k s k' k) T,

Axiom scheme axp

For every T}, Ty . T3 of TREE

k = k
nd k, k' <K the following formal /\ /\
squation k<k'<T|.Tp> T3> = K'<-Ty, Koo Ty Tk
«<Tp,Tz>>ar /\ /\
T Ty T, T3

is an axiomif k>k’

Axiom scheme ax 3 "
For ever T, T, T3 of TREE and /\
k,k’ €K the following formal equation
T 13

k<Ty, k'<Ty, T3>>=k<T|,-T3>or

T T

is an axiom if k 3 k'

T, T

Axiom schem? axy
k

For each T ¢ TREE and k € K the following /\r
formal equation k<T,T>=T or 4

=T is an axiom

We can prove the following consistency theorem

Theorem 2

Let Ty and T be trees of the set TREE. IF AX } T} = Ty, then T) = Ty

Proof. By Induction on the length of a derivation from AX.
To prove the cxistence theorem in section 7 we formulate the following lemmas :

Lemma |
For every Ty, Ty, T3 of TREE und k, k' eK and k<k' we have AX} k<Ty, k'<Ty,

T3>>=k'<k<T},Tp> T3>
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Proof. By using the axiom scheme ax2 and the rule Ry

Lemma 2

For every Ty, Ty of TREE, k, k' € K and k' >k we have AX | k< Ty, K'<T,Ty>>=
k'<Tq, T1>.

Proof. By using the lemma 1. The axiom scheme ax4 and the theorem 1.

6.- Normal forms and uniqueness theorem

We define the following notion of a normal form of a tree of TREE

Dcfinition 5
A tree N is said to be a normal; from if and only if

1. N =d for cach d € D¥ or

2N =kl <dl, k2<d2...ks<ds, ds+1>...50r N ki

Where d1,d2....ds+1 € D+ ; di # di+] For
every  i=1l, klk2..ks e K and 4 k,
kl<k2<..<ks (s 21). [¢

We have the following theorem L

dy .
Theorem 3 (Uniqueness theorem) Sk
s

Let N and N' be normal forms e TREE. If

N =N, then N = N' dg oyl

Proof. For N and N° we have the
following four cases :

Case 1. N = d and N’ = &', where d,d” € D

Here our theorem triveally holds.

Case 2. N=dand N’ = py<d)’, py< dz',...py <dy', d'y+,>‘..>
where d’; # d'; for each i = 1,2,y and Py<py<. <y
Then we obviously obtain that N = N”.

Case 3. N = kl < dl. k2<d2,.,,,k\‘<d‘S dgy > and N's d’ where di # diyq for every
i=1.2..s and k<ky<...<kg.
This case is proved analogously to case 2.

Case 4. N = k<d) ky<dy.... k(<d,, dg,>..> and

N’ = py<d’y, p2<d’2,...py<d'y. d'y”>...>
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where d; “d‘nl for every i=1,2..s | k)< kp<..<kg ; d‘j * d.j+l for each j=1,2,..y and

PI<P<. Py

In this case we obtain that N = N i.e.s = y(1); k| = Py ky =py

= p),(l) and dl = d‘],
dy = d'y,.dg = d’y. deyy = d‘y” (&3]

Let be N = N' (4), for s and y we have the following two cases :

4ls=y

In this case we obtain that k; = pj. i = 1,2,...s. In contrury to the above it is stated as, k;g =
pig (ip € (1.2,...8}). Let kig<pjq.

The case kjg>pq is proved analogously to case ki<pjg.

Let £ 079 € Kand £ = ki €40 = Kjgy. where kjg = 4o < pjg and kg <kjg,q <
Pig » ka. From the definition 2 and (4) it follows that RESULT (N, Em) = RESULT (N',
L0 ) e dig = &4 (5) and RESULT (N, £;0) = RESULT (N, €759 )ie. djgyy = d'jg (6).

From (5) and (6) it follows that diO & di()+l and hence a contradiction, i.e. in this case ki=pi for

every i=1.2,...s (2). From (4), (1) and (2) it follows that d) = &' j.dgyy = &'y, ic. N2 N’

42s=y

Let s<y, i.e. y = s + 1, r 2 1. The case s>y is proved analogously to case s<y. In this case is
proved analogously to ca-se 4.1: ky = py, ky = py.kg = pg (7).

Let £ =pgyqand €7 =pes (61210 £g=pgyyand €75 =pg g +1 Gf r = 1). From the
definition 2 and (4) it follows that RESULT (N, ¢ |) = RESULT (N', £ ), i.e. dgyy = d'g,q (8)
and RESULT (N, £°)) = RESULT (N',{"), i doy1= ;i'“l (9). From (8) an (9) it follows
that &g = d'¢ 4y and hence a contradiction, i.e. s=y in case r>1.

In this case r = 1 it follows from the definition 2, (4) that

RESULT (N, () = RESULT (N", £), ie. dgyy =d'g, (10) and

RESULT (N, £°5) = RESULT (N', ['p),ie. dgy =d'gp (1) d'g ) =d'g

it follows from (10) and (11) and hence a contradiction, i.e.s = y in the case r=1.

N N" immediately follows from the case 4.1 and 4.2.

7. Existence theorem and axiomatization theorem

First we will prove the theorem which says that cach tree of TREE can be uniquely
runsformed into a normal form.

Theorem 4 (Existence theorem)

To cvery tree T Ne TREE we can construct one and only one normal form N e TREE such
hat T= N (1) and AXN}T = N(2).



Proof. The part {1) follows from the second assertion of our theorem by applying th
theorem 2. This part (2) is proved by induction on the complexity of T.

Initial step
T = d Ne D*. We define N:= d and AX} T = N follows from the rule R;.
Induction step
T= k(!‘l, T2>. Our induction supposition yiclds AX ]»Tl = Nl (1)
AX }-TZ = NZ (2), where the tree N; is the normal form of the tree T (i= 1,2). From (1
«and (2) it follows by using the rules Ry, Ry and R that AX} T = k<N|,N»>. For Ny and N
we have following cases:
Case 1. Ny = dy, and Ny = dp. For AX} T=k< dy, dy> we have lhc.follnwing possibilities:
1.1. d| #N d2. In this case we define N: = k<d|, dy>.
1.2. d} = dy. In this case we define N: = Ny (or Np) by using the axiom scheme ax,4 an
rule Ry,
Case 2. Ny N=d} and Np N= p;<d|N pp<dy, ... py<dy; dy+1>'">' where d7 = d'y fo
everyi=1,2,.y: P<pp<.<py and
AX}T ='k<d), py<d)N, py<dy, -py<dy, dyy1>.>> (3)
For (3) we have following case:
2.1. k<py
2.I11. dl # d'l. In this case we define N : = k<d}, Np> and AX} T = N follows from (3
by using the rules Ry and Rj.
2.12.d) = d’. We define N : = Ny and AX } T = N follows from (3) by using th
lemma 2 and the rule R5.

22, pys k< pyypi= 12

AXFET = kedy pjyq<diy ). ..,py<d‘y d‘y+l >..> follows from (3) hy using the axion
scheme ax3 and the rule Ry, This case is proved analogously to case 2.

2.3. k>py. AXET = k<dy, dly+l> follows from (3) by using the axiom scheme ax3 an:
the rule Ry. This case is proved analogously to case 1.

Case 3. Nl = q1<dl' Gy <dy,..., gy<d,, d, >..>and Ny N= d, where di #Nd; for every
=12,

1 q1<qp<... q, and AX } T = k<qy<d}, qp<dy,...q,<d,d, , 1>..>.d>(4).
For (4) we have the following cases ©

3.1. k s q) AX}T = kedy, d> follows from (4) by using the axiom scheme ax; and th
rule Ry.
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This case is proved analogously to case 1

3i2¢ ‘\i<k <G D) (R e o5
AX FT = gp<dy, go<dy, oked;, (d>.> (5) follows from (4, hy using the axiom
schemes axy, axy 'he theorem 1 and the rule Ry,
For (5) we have the followsing 11+ ases :

32,0, diyy Ne d. We define Ni=q) < dj, dy <dg.k<djy), d>.> and AX } T = N
follows from (5) by using the rules Rlund R3

322. 4, = d. AX}T= §l<d1, q2<d2“““i<di~di+l>m> (6) follows the axiom scheme
ax4 and the theorem 1.
In this case we define N: = q<d}, qy<dy,..q;<d;, d;, 1>..> and AX} T = N follows
from (6) by using the ruler Ry and R}

33.k>q,. AX F T = q<dy, qr<dy..qy<dy, kedy g, d>..> follows from (4) by using
the axiom scheme axy and the rule Ry

This casc is proved analogously to case 3.2.

Casc 4. N| = q)<d|, gy < dy... gy < dy, dypy >..> and Ny =N py<dy, pp< d2,4.A.py<dy,

dyH>v.,>, where d; # d;; for cach i = 1.2

1 9<qp<..<qy; d‘j =N d‘j+l for every j =
1,2,...y and Py<py<-<Py- .
AX}T = k< gy<dy, gp<dy mngy<dy, dx+l>"‘>'p|<d‘l""‘Py< d‘y,d‘y+l>“.>>(7)~l-‘or

(7) we have the following cases:

41k < q;- AX } T = k<d1, pl<d',, p2<d‘2,...py<d'y, d‘y+1>m>> follows from (7) by
using the axiom scheme ax1 and the rule Ry. This case is poroed analogously to case 2.
42, q<k <qp4p. 0= 12,0 -1

AX}T = q]<d1, q2<d2,..,qi< di k<di+|, p1<d‘

Py < d‘z,..,,py«i‘y, d‘y'H>,..>> (8)
follows from (7) by using the axiom schemes axy, axo and rule Ry.
For (8) we have the following cases:

42,1 k<p;

4211 diyp» &) We define N = qi<d), qp<dgogi<di, kediy ) py< dy, pp<
dz-""f’y<d'y- d'y+1>...> and AX f T=N follows from the rules Ry and Ry.

4212, diyy= <djp Py<d’y L ppcdiy.py<dy,

d‘y+]>.“>> follows from (8) by using the lemma 2 and the theorem 1.

AXE T = gy<d), gp<d

This case is proved analogously to case 4.2,
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4.2.2.pis k< piyy i = 12, y-10
AX}ET = qy< d}, g < dy,...qi<dj k< &'}, pjyq<d’jypoeen py<d‘y, d‘y“>..4>> follows
from (8) by using the axiom scheme ax3, the theorem 1 and the rule R3. This case is
proved analogously to case 4.2.

423. kzpy.

From (8) it follows by using the .xiom scheme axy the theorem 1 and the rule Ry
that: AX} T = qp<d), dp<ds i<y, ke &'y, d'yyy>.>. This cuse is proved
analogously to case 4,2.

43,k >q,

AX | T = ql<dl' q2<d2""’qx<dx' |‘<dx+l' pl<d'l. p2<d‘2,.“,py<d‘y, d‘y+]>,..>>
follows from (7) by using the axiom scheme ax,, the theorem 1 and the rule Ry. This
case is proved analogously to case 4.2,

The uniqueness it follows from the theorem 2 and 3.

Now we are going to prove the and axi

Theorem 5 (Clwmplcléncss theorem).

Let Ty and Ty be trees of TREE. [F T) Nx Ty, then AX } T) =T, .

Proof. Let Ty = T, (1). By the theorem 4 there are normal forms N and Ny such that Ty =
Nj (2), AX }T| = Nj (3), Ty = Ny (4) and AX } T, = N (5) holds. From (1), (2) and (4) it
follows that N| = Ny (6). From (6) we get Ny = Ny by using the theorem 3 and hence rule R
leads us to; AX} Ny = Ny (7). This result implies AX} T = T, by applying the rules Ry, Ry
to (3), (5) ;Am}l [¥)]

: Theorem 6 (Axiomatization theorem).
Let Ty, Ty be trees of TREE. Ty = Ty if and only if Ax | Tj= T,

Proof. By using the theoremn 2 and .

8. Reduced forms and optimization theorem

First we define the following notions

For every tree T of TREE we define

¥(T) : = the number of all nodes and leals of T and

Deep (d) : = the number of arcs of the way {rom the root to leaf d of T.

Definition 6 k
Let R be a tree of TREE
from of TRE

R is said 10 be a reduced

=de D*orR=

and only if
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for every subtrees Ty = ky <Tyy, T2 >and Ty = ka<Tpy, Top> it holds: ky<ki ky>k; Ty # Ty Tyg
# Typ; and /Decp(d;) - Deep(dj)/ < for each dj, dili # j).
Where k, ky, ky are keys of the st K and d;. dj arc leafs of R.

Definition 7

Atrce Ty of TREE is said to be an optinal if and only if

Y(Tg) = min (¥(T): T € TREE and T = 1},

holds.

Theorem 7 : (Optimization theorem)

To each tree T € TREE we can construct one and only one reduced from R such that,

1.T= R

2. AXbT=R

3. ¥(R) =min {y(I"): T" € TREE and T'= R}

Proof.

The part (1) follows from the part (2) by
using the theorem 2. To every tree T € TREE
we can construct a normal from N such that
T = N @) and AX FT = N (5) by using the
theorem 4. A

IfN =d € D¥ then we define R: = d and dy N
here our theorem trivially holds.

IfN # d e DY, ie.N=k)

where d|. dy, . dgyp € D¥ 3 dy # diyy for /\

s i kp. ko o kg € K and (6 dg dgyq

every i=
ky<kope..<kg (s 2 I).

From(6) it follows by using the
asiom scheme axp, the theorem I,

and the rules Ry, Ry that : AX b N =

and kj <.<kj ) <kj< '\ /
J ket

Kig] <o <ks. ¢ di dist

Where i=|3

\

From (7) it follows by using the kp
axiom scheme ax, the theorem 1 and
the rule Ry in the left - and right

subtrees of the yot k; :
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AXFN=

@®)

ke

kj.1 ST _k{\m
d
14 S day

/ N 2 \

v
k. k kg
‘1/\d2 ‘{\di sl dis2 ‘s/\d

where j = |%ll¢ =

s+1

U and kj < kj <kgi ki <kj<kjpp <kep <kgps

kj <. <kj -1 <kj<kjy <. <kj.j<kj <ki+l<~-_-<- ke.p <kj <kgy) <. <kg.

From (8) it follows in a finite number of steps by using the axiom scheme axs, the theorem 1 and
the rule Ry that.

AXFN=
4 /k.\
5 %
/\ p/\q

kq

or < ki1 Kiv1 ke kg
jr/\z ‘3/\4 ‘(\i 4\»2 ‘é\‘]s»l s/\dH

Kj<kj <k kpy <kj<ky <kj <kp <k <kgioid) #dyidy # dgadig # dpdigy #digg
dgn # de 5 d # d, and from the definition of the number i, j, { , m, n, p. q. ... it follows that.
52 % Gsa] 2 O ¥ Goy ] J P4

58



| Deep(d) - Deep(d?) |< 1 for every d and d of the set {d}, da, ..., dgy).

In this case we define R: = the right tree of the formal equation in Figure (9). From (9) it follows AX
b T = R by using (5) Ry and R3. The result (5) if and only it 3T = Ty, Tp,.... Ty =N such that Tj =
Tis1 and AX | Tj = Tj41. j=1.2.0-1. Where, the tree Tjyy is-the result by using the axiom schcmc.s in
the tree Tjand (T) = Y(T}) 2 Y(Tp) 2. 2 (T = yN), ice.

Y(N) = min {y(T]), Y(T2)....\(Ty)}. Let Tj €TREE, T; € [T, Ta,... Ty | and y(T))<y(N) (10) and Tj =
N(11).

To T; we can construct a normal from Nj such that T = Nj (12) and AX F T; = N;j(13) by using the
theorem 4.

Frrom(11) and(12) it follows that N = Nj(14). N = N;(15) follows from(14) by using the theorem 3,
ie y(N) = ¥(N;) (16). "

The result AX b Ty = Nj if and only if 3 Tj = Ty ., Tja

Ty = Nj such that Tjj = Tjj, 1 and AX b

'l‘ij='1‘ij+|.j:l.2, com-l, i

where ¥(Tp) = ¥(Ti) 2 ¥(Ti) 2. . . 2 ATjyp) = v(N;) (17). From (16) and (17) it follows
¥(Tj) 2 ¥(N) and hence a contradiction, i.e.

¥(N) =min { T" : T" € TREE and T' = R } (18). For the dcfinition of the axiom scheme axp
we have ¥(N) = y(R) (19),and N = R it follows that

y(R)=min { (T') : T" e TREEand T" =R }.

A example

Let
T = 5
| /\
8 1 9

¢ a tree of TREE, where d; = dj for every i = j and i,j = 1,2, ..., 14. To this tree we can
sonstruct a normal form N= 2< dy, 3< d3, 4< dg, 5< ds, 8< dyq, 9< dqy, 13< dy3, dyg > ..
ind a reduced from R=




/2\ /\ /\ A
& 4y dg ds

djo djp dyg dig

where T = N =R, y(N) = ¢(R) = 15 = min { (T') : T ¢ TREE and T" = R }. [6,7.8,9]
9. Conclusion and further rescarch

The efforts to optimize one - dimensional binary search trees as introduced in this paper are quite

useful for pracical applicati specially for the ion of range querics, where the

information about sccondary keys defined on ranges are organized as a binary search tree.

The next i igations which are in preparation are dealing with the optimization of n-dimensional
binary search trees.
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TAP CHI KHOA HOC PHQG HN. KHTN. tXI, n2-1995

VAN DE TOT UU D01 VOI CAC CAY NHI NGUYEN MOT CHIEU

D8 Difc Gido * A Min TJoa
Vién ung dung Khoa hpc mdy tinh va cdc h¢ théng tin

Dai hoc Vién

Pua ra cée khdi niém v& ciy nhi nguyén mot chidu, sy trong dwong gitta céc ciy vd khéi
ni¢m din dwoc ddi vdi cly.

K&t qua chinh 12 dang hé tidu d& hda d& t2 mdt I16p phin hopch twong duong gitta cde cly,
xay dung duoc mot cly t8i wu (duy nhét) trong l¢p phin hopch trén. Thay cho vige phin logi,
tim kiém cdc thdng tin trén mdt 1dp cic phin hoach, ta chi ciin 1am vigc trén cdy téi wu 12 di.
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