MULTIPLIERS FOR GENERALIZED ENTIRE DIRICHLET SEQUENCE SPACES

Trinh Dao Chien

Gia Lai Education and Training Department

I. INTRODUCTION

Given a sequence (λ_k) with $\lambda_k \in \mathbb{C}$, $0 < |\lambda_k| \uparrow +\infty$ and $\rho > 0$, consider the generalization entire Dirichlet series

$$\sum_{k=1}^{\infty} c_k E_{\rho}(\lambda_k z), \quad z \in \mathbf{C} \,, \tag{1}$$

where coefficients ϵ_k are complex numbers and $E_{\rho}(z)$ is the Mittag-Leffler function:

$$E_{\rho}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\frac{n}{\rho} + 1)}$$
 (Γ being the Gamma function).

In [5] we proved that if the series (1.1) converges absolutely for all $z \in \mathbb{C}$ then

$$\limsup_{k \to \infty} \frac{\log |c_k|}{|\lambda_k|^{\rho}} = -\infty, \tag{1.4}$$

and conversey, if the coefficients of the series (1.1) satisfy condition (1.2) and if

$$\limsup_{k \to \infty} \frac{\log k}{|\lambda_k|^{\rho}} < +\infty \tag{1.3}$$

then the series (1.1) converges absolutely for all $z \in \mathbf{C}$.

Next, in the case (λ_k) satisfies the condition (1.3), in the case of [2], we consider $\tilde{\mathfrak{C}}$ the following sequence space

$$A = \{ c_k : c_k \text{ satisfies } (1.2) \} = \{ (c_k); \lim_{k \to \infty} \sup_{k \to \infty} |c_k|^{1/|\lambda_k|^{\rho}} = 0 \}.$$

Denoted by \mathcal{A}^{α} the Köthe dual of \mathcal{A} , i.e.,

$$\mathcal{A}^{\alpha} = \{(u_k) : \sum_{k=1}^{\infty} |c_k u_k| < +\infty \text{ for all } (c_k) \in \mathcal{A}\}.$$

we proved that $\mathcal{A}^{\alpha} = \mathcal{C}$, $\mathcal{A}^{\alpha\alpha} = \mathcal{A}$. Hence $\mathcal{C}^{\alpha} = \mathcal{A}$, where

$$C = \left\{ (u_k) : \limsup_{k \to \infty} |u_k|^{1/|\lambda_k|^{\rho}} < +\infty \right\}.$$

Furthermore, f_{r} each $c = (c_k) \in \mathcal{A}$, we defined

$$||c||_{\mathcal{A}} = \sup_{k>1} |c_k|^{1/|\lambda_k|^{\rho}}$$

In [5], by using the same method as in [2], we proved that \mathcal{A} is a complete separable, non-normable, metrizable space, where the metric is given by

$$d_{\mathcal{A}}(a, b) = ||a - b||_{\mathcal{A}}; \ a = (a_k) \in \mathcal{A}, \ b = (b_k) \in \mathcal{A}.$$

In this note, we continue to study multipliers between these spaces and other sequence spaces on spaces \mathcal{A} and \mathcal{C} .

We recall that for two sequence spaces X and Y, the symbol (X, Y) denotes the sequence space of multipliers from X to Y (see, e.g., [1]), i.e.,

$$(X, Y) = \{(u_k); (c_k u_k) \in Y \text{ for all } (c_k) \in X\}.$$

It is obvious that if

$$X_1 \subset X_2 \text{ and } Y_1 \subset Y_2, \text{ then } (X_2, Y_1) \subset (X_1, Y_2).$$
 (1.4)

Also, it is clear that, the Köthe dual of a sequence space is, in fact, the sequence space of multipliers from this space to l_1 i.e., $(\mathcal{A}, l_1) = \mathcal{A}^{\alpha}$. A question arises: what about multipliers from \mathcal{A} and \mathcal{C} to l_p (0 and vice-versa? This is the subject of the present note.

I would like to express my deep gratitude to Prof. Nguyen Van Mau and Dr. Le Hai Khoi for helpful suggestions in the preparation of this paper.

II. MULTIPLIERS FOR GENERALIZED ENTIRE DIRICHLET SEQUENCE SPACES

First, we note the following result

Lemma 2.1. We have

$$A \subset l_p \subset l_\infty \subset \mathcal{C}, 0$$

We prove the following lemmas

Lemma 2.2. We have

- a) $(\mathcal{A}, \mathcal{C}) \subset \mathcal{C}$,
- b) $C \subset (A, A)$,
- $c) C \subset (C, C).$

Proof:

a) Let $(u_k) \in (\mathcal{A}, \mathcal{C})$. Suppose that $(u_k) \notin \mathcal{C}$. Then for arbitrary M > 0 and for a sequence (ε_n) , $0 < \varepsilon_n \downarrow 0$, there exists an increasing sequence (k_n) of positive numbers such that

$$|u_{k_n}|^{1/|\lambda_{k_n}|^{\rho}} \ge M - \varepsilon_n, \quad \forall n \ge 1.$$

We define the sequence (c_k) as follows

$$c_k = \begin{cases} |u_k|^{-1/2}, & \text{if } k = k_n, \ n = 1, 2, ..., \\ 0, & \text{otherwise.} \end{cases}$$

Then we have

$$\lim_{k \to \infty} \sup_{n \to \infty} |c_k|^{1/|\lambda_k|^{\rho}} = \lim_{n \to \infty} \sup_{n \to \infty} \left(|u_{k_n}|^{1/|\lambda_{k_n}|^{\rho}} \right)^{-1/2} \le \lim_{n \to \infty} \sup_{n \to \infty} (M - \varepsilon_n)^{-1/2} = M^{-1/2} \to 0, \text{ as } M \to +\infty.$$

 $S(c_k) \in A$. However, we have

$$\lim_{k \to \infty} \sup_{n \to \infty} |c_k \iota_k|^{1/|\lambda_k|^{\rho}} = \lim_{n \to \infty} \sup_{n \to \infty} \left(|u_{k_n}|^{1/|\lambda_{k_n}|^{\rho}} \right)^{1/2} \ge \lim_{n \to \infty} \sup_{n \to \infty} (M - \varepsilon_n)^{1/2} = M^{1/2} \to \infty, \text{ as } M \to +\infty.$$

This inplies that $(c_k u_k) \notin \mathcal{C}$ which leads to a contradiction.

The implications b) and c) are obvious \Box

Now we can prove the following result

Theoem 2.1. We have

$$(\mathcal{A},\,\mathcal{C})=(l_p,\,\mathcal{C})=(l_\infty,\,\mathcal{C})=(\mathcal{C},\,\mathcal{C})=(\mathcal{A},\,\mathcal{A})=(\mathcal{A},\,l_p)=(\mathcal{A},\,l_\infty)=\mathcal{C}.$$

Proof:From Lemma 2.1, Lemma 2.2 and (1.4), it follows that

$$\mathcal{C} \subset (\mathcal{A}, \mathcal{A}) \subset (\mathcal{A}, l_p) \subset (\mathcal{A}, l_{\infty}) \subset (\mathcal{A}, \mathcal{C}) \subset \mathcal{C},$$

and

$$\mathcal{C} \subset (\mathcal{C},\,\mathcal{C}) \subset (l_\infty,\,\mathcal{C}) \subset (l_p,\,\mathcal{C}) \subset (\mathcal{A},\,\mathcal{C}) \subset \mathcal{C}\,.$$

 $T_{e \text{ theorem is proved}} \square$ N_{xt} , we prove the following

Lemma 2.3. We have

$$a)(l_p, A) \subset A,$$

$$b)(C, l_{\infty}) \subset A,$$

$$c)A\subset (\mathcal{C}, \mathcal{A}).$$

Proof:

a) First, we note that $(c_k) \in \mathcal{A}$ if and only if $(c_k^p) \in \mathcal{A}$ (with any appropriate choice of the power). Furthermore, we can check that the sequence (λ_k) satisfies Condition (1.3) if and only if there exists $\alpha > 0$ such that

$$\sum_{k=1}^{\infty} e^{-\alpha|\lambda_k|^{\rho}} < +\infty. \tag{2.1}$$

Now, let $(u_k) \in (l_p, \mathcal{A})$. Suppose that $(u_k) \notin \mathcal{A}$, which means that $(u_k^p) \notin \mathcal{A}$. Then there exists M > 0 such that for a sequence $(\varepsilon_n) \downarrow 0$, there exists an increasing sequence (k_n) of positive numbers such that

$$\frac{\log |u_{k_n}|^p}{|\lambda_{k_n}|^\rho} \ge M - \varepsilon_n \,, \ \forall n \ge 1 \,.$$

This implies that

$$|u_{k_n}|^{-p} \le \exp \left[(\varepsilon_n - M) |\lambda_{k_n}|^{\rho} \right], \quad \forall n \ge 1.$$

Define a sequence (c_k) as follows:

$$c_k = \begin{cases} \frac{\exp\left[p^{-1}(\gamma - \varepsilon_n)|\lambda_{k_n}|^{\rho}\right]}{|u_{k_n}|}, & \text{if } k = k_n, \ n = 1, 2, ..., \\ 0, & \text{otherwise,} \end{cases}$$

where $\gamma < M - \alpha$ and $\alpha > 0$ is defined by (2.1). Then, we have

$$\sum_{k=1}^{\infty} |c_k|^p = \sum_{n=1}^{\infty} |c_{k_n}|^p = \sum_{n=1}^{\infty} \frac{\exp\left[(\gamma - \varepsilon_n)|\lambda_{k_n}|^\rho\right]}{|u_{k_n}|^p} \le \sum_{n=1}^{\infty} \exp\left[(\gamma - M)|\lambda_{k_n}|^\rho\right] \le \sum_{n=1}^{\infty} \exp\left(-\alpha|\lambda_{k_n}|^\rho\right) < +\infty,$$

due to (2.1), which shows that $(c_k) \in l_p$. However,

$$\limsup_{k\to\infty} \frac{\log|c_k u_k|^p}{|\lambda_k|^p} = \limsup_{n\to\infty} \frac{\log|c_{k_n} u_{k_n}|^p}{|\lambda_{k_n}|^p} = \limsup_{n\to\infty} (\gamma - \varepsilon_n) = \gamma > -\infty,$$

which means that $((c_k u_k)^p) \notin \mathcal{A}$ or $(c_k u_k) \notin \mathcal{A}$. This is a contradiction. Hence $(l_p, \mathcal{A}) \subset \mathcal{A}$.

b) Let $(u_k) \in (\mathcal{C}, l_{\infty})$. Assume that $(u_k) \notin \mathcal{A}$, then there exists an increasing sequeence (k_n) of positive numbers such that

$$\lim_{n \to \infty} |u_{k_n}|^{1/|\lambda_{k_n}|^{\rho}} = +\infty. \tag{(2.2)}$$

Consider a sequence (c_k) as follows:

$$c_k = \begin{cases} k_n/|u_{k_n}|, & \text{if } k = k_n, \ n = 1, 2, \dots, \\ 0, & \text{othewise}. \end{cases}$$

Then we have

$$\limsup_{k\to\infty} |c_k|^{1/|\lambda_k|^{\rho}} = \limsup_{k\to\infty} (k_n/|u_{k_n}|)^{1/|\lambda_{k_n}|^{\rho}} = 0 < +\infty,$$

due to (2.2) and (1.3). Hence $(c_k) \in \mathcal{C}$. However

$$\sup_{k \ge 1} |c_k u_k| = \sup_{n \ge 1} |c_{k_n} u_{k_n}| = \sup_{n \ge 1} k_n = +\infty.$$

Hence $(c_k u_k) \notin l_{\infty}$: a contradiction.

c) The implication $A \subset (C, A)$ is obvious. \square

We can prove the following

Theorem 2.2. We have

$$(\mathcal{C}, l_{\infty}) = (\mathcal{C}, l_p) = (\mathcal{C}, \mathcal{A}) = (l_{\infty}, \mathcal{A}) = (l_p, \mathcal{A}) = \mathcal{A}.$$

Proof: From Lemma 2.1, Lemma 2.3 and (1.4), it follows that

$$\mathcal{A} \subset (\mathcal{C}, \mathcal{A}) \subset (l_{\infty}, \mathcal{A}) \subset (l_{p}, \mathcal{A}) \subset \mathcal{A}$$
.

The theorem is proved \Box

Remark. Theorem 2.1 and 2.2 for the ordinary Dirichlet series of one and several complex variables were proved in [3] and [4].

REFERENCES

- [1] J. M. Anderson & A. L. Shields. Coefficient multipliers of Bloch functions, *Trans. Amer. Math. Soc.* **224**(1976), 255-265.
- [2] Le Hai Khoi. Holomorphic Dirichlet series in several variable, Math. Scand. 77(1995), 85-107.
- [3] Le Hai Khoi. Multipliers for Dirichlet series in the complex plane, South-East Asian Math. Bull. (to appear).
- [4] Le Hai Khoi. Coefficient multipliers for some classes of Dirichlet series in seceral complex variables, *Acta Math. Vietnamica* (to appear).
- [5] Trinh Dao Chien. Sequence space of coefficients of generalized entire Dirichlet series, VNU Journal of Science, Nat. Sci., t. XIV, N₀1(1998), 8-15.

TAF CHÍ KHOA HỌC ĐHQGHN, KHTN, t.XV, ${\sf n}^0$ 1 - 1999

NHÂN TỬ CỦA KHÔNG GIAN DÃY DIRICHLET NGUYÊN SUY RÔNG

Trịnh Đào Chiến

Sở Giáo dục và Đào tạo Gia Lai

Với hai không gian dãy X và Y, không gian dãy của các nhân tử từ X vào Y, ký hiệt là (X,Y), được xác định như sau $(X,Y):=\{(u_k);\ (c_ku_k)\in Y,\ \forall (c_k)\in X\}$. Xét không gian dãy \mathcal{A} , các hệ số của chuỗi Dirichlet suy rộng dạng $\sum_{\infty}^{k=1} c_k E_{\rho}(\lambda_k z)$, trong đó $E_{\rho}(z)$ là hàm Mittag - Leffler. Qua mô tả không gian \mathcal{A}^{α}_{-} đối ngẫu Köthe của \mathcal{A} , ta thấy rằng $(\mathcal{A},l_1)=\mathcal{A}^{\alpha}$, trong đó $l_1=\{(u_k);\ \sum_{\infty}^{k=1}|u_k|<\infty\}$. Một câu hỏi đặt ra: kết quả sẽ như thế nào đối với các không gian dãy của các nhân tử từ $\mathcal{A},\mathcal{A}^{\alpha}$ vào các không gian quer thuộc khác, chẳng hạn $l_p(0< p<\infty), l_{\infty}, \ldots$ và ngược lại? Bài báo này sẽ đề cập đến các nội dung đó.