ON LENGTH FUNCTIONS DEFINED BY A SYSTEM OF PARAMETERS IN LOCAL RINGS

Nguyen Thai Hoa

Faculty of Mathematics
Pedagogical Institute of Quy Nhon

I. INTRODUCTION

Let (A, \mathfrak{m}) be a commutative Noetherian local ring and M be a finitely generated A-module with dim M=d. We denote $Q_M(\underline{x})$ the submodule of M defined by

$$Q_M(\underline{x}) = \bigcup_{n>0} ((x_1^{n+1}, ..., x_d^{n+1})M : x_1^n ... x_d^n),$$

where $\underline{x} = (x_1, ..., x_d)$ is a system of parameters of M.

Note that the submodule $Q_M(\underline{x})$ is used for studying the monomial conjecture with respect to the system of parameters \underline{x} (see [7, 8]). Recall that the monomial conjecture holds true for the system of parameters \underline{x} if $x_1^n...x_d^n \notin (x_1^{n+1},...,x_d^{n+1})M$ for all n>0. Therefore, the monomial conjecture holds true for \underline{x} if and only if $Q_M(\underline{x}) \neq M$. On the other hand, it was shown in [4] that $Q_M(\underline{x}) = (x_1,...,x_d)M$ provided M is Cohen-Macaulay module. Conversely, if there is a system of parameters \underline{x} such that $Q_M(\underline{x}) = \underline{x}M$ then M is Cohen-Macaulay module. This fact suggest us to study the length $l_A(M/Q_M(\underline{x}))$. The purpose of this note is to study the following function of \underline{n}

$$q_{M,\underline{x}}(\underline{n}) = l_A(M/Q_M(\underline{x},\underline{n})),$$

where $\underline{n} = (n_1, ..., n_d)$ is a d-tuple of positive integers and $\underline{x}(\underline{n}) = (x_1^{n_1}, ..., x_d^{n_d})$. Then, a natural question is whether $q_{M,\underline{x}}(\underline{n})$ is a polynomial of $n_1, ..., n_d$ for \underline{n} sufficiently large $(\underline{n} \gg 0)$? or it is equivalent to ask whether the function

$$J_{M,\underline{x}}(\underline{n}) = n_1 \dots n_d e(\underline{x}, M) - q_{M,\underline{x}}(\underline{n})$$

is a polynomial for $\underline{n} \gg 0$?

We will give in this note some basic properties of the function $q_{M,\underline{x}}(\underline{n})$ in Section 2 and some properties of the function $J_{M,\underline{x}}(\underline{n})$ in Section 3.

II. BASIC PROPERTIES OF $q_{M,\underline{x}}(\underline{n})$

Throughout this note, we denote by (A, \mathfrak{m}) a commutative Noetherian local ring with the maximal ideal \mathfrak{m} and by M a finitely generated A-module with dim M=d. Let

 $\underline{x}=(x_1,...,x_d)$ be a system of parameters of M. Then the submodule $Q_M(\underline{x})$ of M is defined by

$$Q_M(\underline{x}) = \bigcup_{n>0} ((x_1^{n+1}, ..., x_d^{n+1})M : x_1^n ... x_d^n),$$

and for $\underline{n} = (n_1, ..., n_d)$, we put

$$Q_M(\underline{x},\underline{n}) = Q_M(\underline{x}(\underline{n})).$$

The functions $q_{M,\underline{x}}(\underline{n})$ and $J_{M,\underline{x}}(\underline{n})$ are defined by

and

$$q_{M,\underline{x}}(\underline{n}) = l_A(M/Q_M(\underline{x},\underline{n})),$$

$$J_{M,\underline{x}}(\underline{n}) = n_1...n_d e(\underline{x}, M) - l_A(M/Q_M(\underline{x}, \underline{n})).$$

Therefore, we can consider $q_{M,\underline{x}}(\underline{n})$ and $J_{M,\underline{x}}(\underline{n})$ as functions of \underline{n} .

Lemma 2.1. Let $\underline{x} = (x_1, ..., x_d)$ be a system of parameters of M. Then the following statements are true.

- i) Let N be an Arinian submodule of M. Then \underline{x} is a system of parameters of $\overline{M}=M/N$ and $q_{\overline{M},x}(\underline{n})=q_{M,\underline{x}}(\underline{n}).$
- ii) Put $\overline{M}_1 = M/(o:x_1)$. Then \underline{x} is a system of parameters of \overline{M}_1 and $q_{\overline{M}_1,\underline{x}}(\underline{n}) = q_{M,\underline{x}}(\underline{n})$.

Proof: i) From the property of the system of parameters, \underline{x} is a system of parameters of \overline{M} . Let

$$\mathfrak{m} N \supseteq \mathfrak{m}^2 N \supseteq \ldots \supseteq \mathfrak{m}^t N \supseteq \ldots$$

be a descending chain of submodule of N. Since N is an Artinian A- module then $\mathfrak{m}^k N = \mathfrak{m}^{k+1} N$ for a positive integer k. Since

$$\bigcap_{n>0}\mathfrak{m}^nN=0,$$

we have $\mathfrak{m}^k N = 0$.

Consider the map

$$\Phi: M/Q_M(\underline{x},\underline{n}) \to \overline{M}/Q_{\overline{M}}(\underline{x},\underline{n}),$$

defined by $\Phi(u + Q_M(\underline{x}, \underline{n})) = \overline{u} + Q_{\overline{M}}(\underline{x}, \underline{n})$ for any $u \in M$. Since M is an A-module Noetherian it should be note that there exists $n_0 \gg 0$, such that for $\underline{n} = (n_1, ..., n_d)$, we have

and

$$Q_M(\underline{x},\underline{n}) = (x_1^{n_1(n_0+1)}, ..., x_d^{n_d(n_0+1)})M : x_1^{n_1n_0} ... x_d^{n_dn_0},$$

$$Q_{\overline{M}}(\underline{x},\underline{n}) = (x_1^{n_1(n_0+1)},...,x_d^{n_d(n_0+1)})\overline{M} : x_1^{n_1n_0}... x_d^{n_dn_0}.$$

Thus, it is easy to show that Φ is well defined and it is surjective. Therefore $ker\phi = 0$.

Furthermore, we can choose $n_0 \ge k$, hence it is also injective. Therefore $q_{M,\underline{x}}(\underline{n}) = q_{\overline{M},\underline{x}}(\underline{n})$.

ii) Can be proved similarly as (i) □

Lemma 2.2. Suppose that \widehat{A} is the m-adic completion of A and \widehat{M} is the m-adic completion of M. Then

$$q_{M,\underline{x}}(\underline{n}) = q_{\hat{M},\underline{x}}(\underline{n})$$

for all $\underline{n} = (n_1, ..., n_d)$.

Proof. Since the natural homomorphism $A \to \widehat{A}$ is absolutly flat, then \underline{x} is a system of parameters of \widehat{M} and

$$\widehat{Q_M(\underline{x},\underline{n})} = \widehat{Q_{\hat{M}}(\underline{x},\underline{n})}.$$

Therefore we have

$$q_{M,\underline{x}}(\underline{n}) = l_A(M/Q_M(\underline{x},\underline{n})) = l_A(\widehat{M}/Q_M(\underline{x},\underline{n})) = l_A(\widehat{M}/Q_{\stackrel{\wedge}{M}(\underline{x},\underline{n})}) = q_{\stackrel{\wedge}{M},\underline{x}}(\underline{n}) \ \Box$$

Lemma 2.3. If $\underline{n} \geq \underline{m}$ (i.e. $n_i \geq m_i, i = 1, ..., d$) then $Q_M(\underline{x}, \underline{n}) \subseteq Q_M(\underline{x}, \underline{m})$.

Proof. Let α be a positive integer. We put

$$Q_M(\alpha) = \bigcup_{n>0} ((x_1^{\alpha(n+1)}, x_2^{n+1}, ..., x_d^{n+1})M : x_1^{\alpha n} x_2^n ... x_d^n).$$

Since $Q_M(\underline{x})$ is independent of the order of the sequence \underline{x} , we have only to show that

$$Q_M(\alpha) \subset Q_M(\alpha - 1) \subset \ldots \subset Q_M(1),$$

with $\alpha \geq 2$. In fact, M is Noetherian then there exist $n_0 \gg 0$ such that

$$Q_M(\alpha) = (x_1^{\alpha(n_0+1)}, x_2^{n_0+1}, ..., \ x_d^{n_0+1}) M : x_1^{\alpha n_0} x_2^{n_0} ... \ x_d^{n_0},$$

and

$$Q_M(\alpha-1) = (x_1^{(\alpha-1)(2n_0+1)}, x_2^{2n_0+1}, ..., x_d^{2n_0+1})M : x_1^{(\alpha-1)(2n_0)} x_2^{2n_0} ... x_d^{2n_0}.$$

For any element $a \in Q_M(\alpha)$

$$(x_1^{(\alpha-1)2n_0}x_2^{2n_0}\dots\ x_d^{2n_0})a=(x_1^{\alpha n_0-2n_0}\dots\ x_d^{n_0})(x_1^{\alpha n_0}\dots\ x_d^{n_0})a$$

$$= (x_1^{\alpha n_0 - 2n_0} \dots x_d^{n_0})(x_1^{\alpha (n_0 + 1)} y_1 + x_2^{n_0 + 1} y_2 + \dots + x_d^{n_0 + 1} y_d)$$

for some $y_1, ..., y_d \in M$. It follows that

$$(x_1^{(\alpha-1)2n_0}x_2^{2n_0}\dots x_d^{2n_0})a = x_1^{(\alpha-1)(2n_0+1)}z_1 + x_2^{2n_0+1}z_2 + \dots + x_d^{2n_0+1}z_d$$

for some $z_1, ..., z_d \in M$. Therefore, $a \in Q_M(\alpha - 1)$

Corollary 2.4. The function $q_{M,\underline{x}}(\underline{n})$ is ascending, i.e., $q_{M,\underline{x}}(\underline{n}) \geq q_{M,\underline{x}}(\underline{m})$ for $\underline{n} \geq \underline{m}$, $(n_i \geq m_i \text{ for all } i = 1, \dots d)$.

Proof. For $\underline{n} \geq \underline{m}$, we consider the map

$$\varphi: M/Q_M(\underline{x},\underline{n}) \to M/Q_M(\underline{x},\underline{m}),$$

defined by

$$\varphi(a + Q_M(\underline{x}, \underline{n})) = a + Q_M(\underline{x}, \underline{m}),$$

for any $a \in M$. By Lemma 2.3, the map φ is well defined and it is surjective. Hence

$$l_A(M/Q_M(\underline{x},\underline{m})) \le l_A(M/Q_M(\underline{x},\underline{n})) \square$$

Theorem 2.5. $q_{M,\underline{x}}(\underline{n}) \leq n_1... n_d \ e(\underline{x}, M)$.

Proof. We only need to show that $q_{M,\underline{x}}(1) \leq e(\underline{x},M)$. We prove this inequality by induction on d.

If d=1, by Lemma 2.1 (i), we may assume that depth M>0. Since depth $M=\dim M$ then M is an A-module Cohen-Macaulay. Hence, we get $l_A(M/x_1M)=e(x_1,M)$ and $Q_M(x_1,1)=x_1M$. So we have done for the case d=1.

For d>1 and the assertion is true for all A-modules of dimension < d. By Lemma 2.1, (ii), we may assume that depth M>0 and x_1 is a non-zero divisor of M. Let $\overline{M}=M/x_1M$. We get dim $\overline{M}=d-1$ and $\underline{x}'=(x_2,...,x_d)$ is a system of parameters of \overline{M} . Consider the map

$$\Phi: \overline{M}/Q_{\overline{M}}(\underline{x'},1) \to M/Q_M(\underline{x},1),$$

defined by

$$\Phi(\overline{a} + Q_{\overline{M}}(\underline{x}', 1)) = a + Q_M(\underline{x}, 1),$$

for any element $a \in M$. The map Φ is well defined and it is an epimorphism. We obtain

$$l_A(M/Q_M(\underline{x},1)) \le l_A(\overline{M}/Q_{\overline{M}}(\underline{x}',1)).$$

Applying the induction hypothesis, we get

$$l_A(\overline{M}/Q_{\overline{M}}(\underline{x}',1)) \le e(\underline{x}',\overline{M}).$$

Since x_1 is a non-zero divisor of M then $e(\underline{x}', \overline{M}) = e(\underline{x}, M)$. Therefore, $l_A(M/Q_M(\underline{x}, 1) \le e(\underline{x}, M)$ and the theorem is proved \square

III. THE FUNCTION
$$J_{M,\underline{x}}(\underline{n})$$

Recall that the function $q_{M,\underline{x}}(\underline{n})$ is a polynomial when \underline{n} is large enough $(n\gg 0)$ if and only if

$$J_{M,\underline{x}}(\underline{n}) = n_1...n_d e(\underline{x}, M) - l_A(M/Q_M(\underline{x}, \underline{n})),$$

is a polynomial for $n \gg 0$.

Proposition 3.1. Suppose that $\underline{x} = (x_1, ..., x_d)$ is a system of parameters of M and $\underline{n} = (n_1, ..., n_d)$. Then $J_{M,\underline{x}}(\underline{n}) \leq n_1 ... n_d J_{M,\underline{x}}(1)$.

Proof. Let α be a positive integer and $\underline{x}(\alpha) = (x_1^{\alpha}, x_2, ..., x_d)$. By Lemma 2.3, we obtain

$$Q_M(\alpha) \subseteq Q_M(\alpha - 1) \subseteq \dots \subseteq Q_M(1), \tag{1}$$

for $\alpha \geq 2$. Consider the map

$$\varphi: M/Q_M(\alpha) \to M/Q_M(\alpha-1),$$

defined by

$$\varphi(a + Q_M(\alpha)) = a + Q_M(\alpha - 1),$$

for any element $a \in M$. By (1), it is easy to show that the map φ is well defined and it is an epimorphism and

$$Ker(\varphi) = Q_M(\alpha - 1)/Q_M(\alpha).$$

Consider the map

$$\Psi: M/Q_M(1) \to Ker(\varphi)$$

defined by

$$\Psi(a + Q_M(1)) = x_1^{\alpha - 1}a + Q_M(\alpha),$$

for any element $a \in M$. Since $x_1^{\alpha-1}Q_M(\alpha) \subseteq Q_M(1)$, we can verify that the map Ψ is well defined and it is a monomorphism. Since φ is surjective and Ψ is injective, we obtain

$$\begin{split} l_A(M/Q_M(\alpha)) &= l_A(M/Q_M(\alpha-1)) + l_A(Ker(\varphi)) \\ &\geq l_A(M/Q_M(\alpha-1)) + l_A(M/Q_M(1)). \end{split}$$

Applying the induction hypothesis, we get

$$l_A(M/Q_M(\alpha-1)) \ge (\alpha-1))l_A(M/Q_M(1)).$$

Hence

$$l_A(M/Q_M(\alpha)) \ge \alpha \ l_A(M/Q_M(1)).$$

Because the proof is independent the order of the sequence \underline{x} , finally, we have

$$l_A(M/Q_M(\underline{x},\underline{n})) \ge n_1...n_d l_A(M/Q_M(\underline{x},1)).$$

Hence

$$J_{M,\underline{x}}(\underline{n}) = n_1...n_d \ e(\underline{x},M) - l_A(M/Q_M(\underline{x},\underline{n})) \le n_1...n_d J_{M,\underline{x}}(1).$$

The proposition is proved. \Box

Theorem 3.2. The function $J_{M,x}(\underline{n})$ is ascending, i.e,

$$J_{M,\underline{x}}(\underline{m}) \leq J_{M,\underline{x}}(\underline{n}),$$

when $\underline{m} \leq \underline{n}$.

Proof. For every $\sigma \in S_d$, we have

$$Q_M(\underline{x},\underline{n}) = Q_M(\underline{x}^{\sigma},\underline{n}),$$

where $\underline{x}^{\sigma} = (x_{\sigma(1)}, ..., x_{\sigma(d)})$. Hence, we only need to prove the theorem in the case $m_1 = n_1, ..., m_{d-1} = n_{d-1}$ and $m_d \leq n_d$. We do it by induction on d. In the case d = 1, we get

$$J_{M,\underline{x}}(\underline{m}) = J_{M,\underline{x}}(\underline{n}) = 0.$$

For d > 1, by Lemma 2.1, (ii), we can assume that depth M > 0 and x_1 is a non-zerodivisor. Let $\overline{M} = M/x_1^{n_1}M$.

Consider the map

$$\Psi_1: \overline{M}/Q_{\overline{M}}(\underline{x}',\underline{m}') \to M/Q_M(\underline{x},\underline{m}),$$

defined by

$$\Psi_1(\overline{a} + Q_{\overline{M}}(\underline{x}', \underline{m}')) = a + Q_M(\underline{x}, \underline{m}),$$

for any element $\overline{a} \in \overline{M}$, where $\underline{m}' = (m_2, ..., m_d), x' = (x_2, ..., x_d)$; and

$$\Psi_2: \overline{M}/Q_{\overline{M}}(\underline{x}',\underline{n}') \to M/Q_M(\underline{x},\underline{n}),$$

defined by

$$\Psi_2(\overline{u} + Q_{\overline{M}}(\underline{x}', \underline{n}')) = u + Q_M(\underline{x}, \underline{n}),$$

for any element $\overline{u} \in \overline{M}$, where $\underline{n}' = (n_2, ..., n_d)$. We can see that these maps are well defined and they are surjective. So we get

$$l_A(\overline{M}/Q_{\overline{M}}(\underline{x}',\underline{m}')) = l_A(Ker(\Psi_1)) + l_A(M/Q_M(\underline{x},\underline{m})),$$

and

$$l_A(\overline{M}/Q_{\overline{M}}(\underline{x}',\underline{n}')) = l_A(Ker(\Psi_2)) + l_A(M/Q_M(\underline{x},\underline{n})).$$

It follows that

$$J_{M,\underline{x}}(\underline{m}) = J_{\overline{M},\underline{x}'}(\underline{m}') + l_A(Ker(\Psi_1)),$$

and

$$J_{M,\underline{x}}(\underline{n}) = J_{\overline{M},x'}(\underline{n}') + l_A(Ker(\Psi_2)).$$

Applying the induction hypothesis, we obtain

$$J_{\overline{M},\underline{x'}}(\underline{m'}) \leq J_{\overline{M},\underline{x'}}(\underline{n'}).$$

Let $m_d + s = n_d$, we have

$$x_d^s Q_{\overline{M}}(\underline{x}', \underline{m}') \subseteq Q_{\overline{M}}(\underline{x}', \underline{n}').$$
 (2)

Consider the map

$$\Phi: \overline{M}/Q_{\overline{M}}(\underline{x}',\underline{m}') \to \overline{M}/Q_{\overline{M}}(\underline{x}',\underline{n}'),$$

defined by

$$\Phi(\overline{u} + Q_{\overline{M}}(\underline{x'},\underline{m'})) = x_d^s \overline{u} + Q_{\overline{M}}(\underline{x'},\underline{n'}),$$

for any element $\overline{u} \in \overline{M}$. By (2), the map Φ is well defined and it is an injection. Let Φ_1 be the map of Φ restricted into the set Ker (Ψ_1) . We can easily check that Φ_1 mapping of the set Ker (Ψ_1) into Ker (Ψ_2) is also injective. Therefore, $l_A(ker(\Psi_1)) \leq l_A(ker(\Psi_2))$. It follows that

$$J_{M,\underline{x}}(\underline{m}) \leq J_{M,\underline{x}}(\underline{n}),$$

as required

For dim $M \leq 2$, we have following result.

Theorem 3.3. If dim $M \leq 2$ then the function $J_{M,\underline{x}}(\underline{n})$ is a constant for $\underline{n} \gg 0$.

Proof: In the case d = 1, by Lemma 2.1, we can assume that depth M > 0. Since depth $M = \dim M$ then M is an A-module Cohen-Macaulay. Hence, $Q_M(x_1, n_1) = x_1^{n_1} M$ and

$$l_A(M/Q_M(x_1, n_1)) = l_A(M/x_1^{n_1}M) = e(x_1^{n_1}, M) = n_1 e(x_1, M).$$

Therefore $J_{M,x_1}(n_1) = 0$.

In the case d=2, by Lemma 2.1 and Lemma 2.2, without any loss of the generality, we can assume that $A=\widehat{A}$. Let $M_n=M/x_1^nM$, we have dim $M_n=1$. For any positive integer n we set $\underline{x}(n)=(x_1^n,x_2^n)$ and $\underline{x}'(n)=(x_2^n)$ to be a system of parameters of M_n . There is an exact sequence of A-modules and A-homomorphism

$$0 \to Ker(\varphi) \to M_n/Q_{M_n}(x_2^n) \xrightarrow{\varphi} M/Q_M(\underline{x}(n)) \to 0$$
 (3)

where φ is defined by

$$\varphi(\overline{u} + Q_{M_n}(x_2^n)) = u + Q_M(\underline{x}(n)),$$

for any $\overline{u} \in M_n$. Following [1], we can choose x_1 so that

$$Ker(\varphi) \cong H^1_{\mathfrak{m}}(M)/x_1^n H^1_{\mathfrak{m}}(M),$$

and the length of $H^1_{\mathfrak{m}}(M)/x_1^nH^1_{\mathfrak{m}}(M)$ is finite and independent of n when n is large enough. By (3), it follows that

$$l_A(M_n/Q_{M_n}(x_2^n)) = l_A(ker(\varphi)) + l_A(M/Q_M(\underline{x}(n))).$$

We get

$$J_{M,\underline{x}}(n) = n^{2}e(\underline{x}, M) - l_{A}(M/Q_{M}(\underline{x}(n)))$$

$$= e(x_{2}^{n}, M_{n}) - l_{A}(M_{n}/Q_{M_{n}}(x_{2}^{n})) + l_{A}(H_{\mathfrak{m}}^{1}(M)/x_{1}^{n}H_{\mathfrak{m}}^{1}(M))$$

$$= l_{A}(H_{\mathfrak{m}}^{1}(M)/x_{1}^{n}H_{\mathfrak{m}}^{1}(M)).$$

is a constant for $n \gg 0$. Applying Theorem 3.2, the theorem is proved \square

REFERENCES

- [1] N.T. Cuong and V.T. Khoi. Modules whose local cohomology modules have Cohen-Macaulay Matlis duals. *Proc. of Hanoi Conference 1995, Springer-Verlag,* 223-231
- [2] N.T. Cuong and N.D. Minh. On the length of Koszul homology and generalized fractions, *Math. Proc. Cambridge Phil. Soc.* 119 (1)(1996), 31-42.
- [3] N.T. Cuong and N.D. Minh. Length of generalized fractions of rings with polynomial type ≤ 2 Vietnam J. Math 26 1(1998), 87 90.
- [4] R.Y. Hartshorme. A property of A-sequence. Bull. Soc. Math. France, 4(1966), 61-66.
- [5] H. Matsumura. Commutative algebra. Second edition, London: Benjamin 1980.
- [6] N.D. Minh. On the least degree of polynomials bounding above the differences between multiplicities and length of generalized fractions. Acta Math. Vietnam 20 (1)(1995), 115 - 128.
- [7] R.Y. Sharp and H. Zakeri. Modules of generalized fractions, *Mathematika* 29(1982), 32 - 41.
- [8] R.Y. Sharp and H. Zakeri. Lengths of certain generalized fractions, *J.Pure Appl.* Alg. **38**(1985), 323 336.

TẠP CHÍ KHOA HỌC ĐHQGHN, KHTN, t.XV, ${\sf n}^0{\sf 1}$ - 1999

VỀ NHỮNG HÀM ĐỘ DÀI XÁC ĐỊNH BỞI HỆ THAM SỐ TRONG VÀNH ĐỊA PHƯƠNG

Nguyễn Thái Hòa

Khoa Toán, Đại học Sư phạm Quy Nhơn

Trong bài này chúng tôi định nghĩa hai hàm độ dài $q_{M,\underline{x}}(\underline{n})$ và $J_{M,\underline{x}}(\underline{n})$ theo d-biến $\underline{n}=(n_1,...,n_d)$ liên kết với hệ tham số $\underline{x}=(x_1,...,x_d)$ của A - môđun M. Một số tính chất của những hàm này được nêu ra.