VNU_ JOURNAL OF SCIENCE, Nat. Sci .t xv, ns . 1999

FUNCTIONAL DEPENDENCIES WITH CONTEXT
DEPENDENT NULL VALUES IN RELATIONAL DATABASES

Bui Thi Thuy Hien
Faculty of Mathematics, Mechanics and Inforiatics

College of Natural Sciences - VNU

Nguyen Cat Ho
Institute of Information Technology

National Center for Science and Technology.

Abstract. The aimn of this paper is to present an ertension of the concept of
functional dependency in a database in which the presence of contert dependent null
values is allowed. It is shown that the set of Armstrong’s inference rules forms
a sound and complete ariom system for functional dependencies under a suitable
semantic of context nulls. Some rules and algorithms for manipulating contert null

values are also introduced and eramined.

1. INTRODUCTION

In the theory of relational database design. the integritv constraints play a crucial
role and have been deeply investigated in the framework of database relations without
null values. In such a framework, functional dependencies (FDs) are the most natural
and useful. The notion of a key (derived from a given set of FDs) is fundamental to the
relational model. A sound and complete axiom systein for TDs was fistly given in 1] and is
known as Armstrong’s axiom svstem. Many authors, e.g. M. Levene [11], Lien[12], Atzeni
and Morfuni [2]. (3], [4], Maier [13] have considered FDs in database relations containing
unmarked null values, which dre semantically interpreted as either “unknown” [11], [13] o1
“no information” [12], [2], [3], [4]. Lien, Atzeni and Morfuni have introduced a sound and
complete axiom system for FDs by dropping the transitivity rule and adding the union
and decomposition rules to Armstrong’s axiom system. To maintain the satisfaction of
FDs in relational databases with incomplete information, Maier [13] has introduced and
investigated marked null values.

The aim of this paper is to present an extension of the concept of functional depen-
dency in a database in which the presence of context dependent null values is allowed. It
is shown that the set of Armstrong’s inference rules forms a sound and complete axiom
system for functional dependencies under a suitable semantic of context null. Some rules
and algorithms to manipulate context null values are also introduced and examined.

14

Functional dependencies with context dependent null values ... 15
2. BASIC DEFINITIONS

Let R(Ay,... | A,) be arelational scheme defined over a set of attributes A4;, vy Bl
The domain of each attribute 4, is denoted by Dom(A,). The domain of R consists of the
Cartersian product Dom(A;) x Dom(Ay) x ... x Dom(A,) and denoted by Dom(R).

We extend each domain Dom(A;) to an extended domain Dom*(A,) by adding a
finite set of null svmbols, namely Dom*(A;) = Dom(A,) U A,;, UA,, U {dne}, where

- A;, 1s the set of unknown context nulls denoted by 8, 6o, ...

- A,, is the set of open context nulls denoted by 3, 3. ...

- dne means it “does not exit” context null.

- Dom(A;), A,,,A,,,{dne} are the disjoint sets.

The extended domain Dom*(R) of R consists of the Cartersian product

Dom™(A,) x ... x Domn™(A,).

A relation of a scheme R is a subset of Dom™(R). Such instances are denoted by
lower case letters such as r,ry, ...

A relation contains no or some null values is called a partial relation. The set of all
partial relations over scheme R is denoted by Rel;(R).

A relation without null values called a total relation, the set of all total relations
over scheme R is denoted by Rel(R). A tuple of an instance r is called an element of r.
We denote tuples by letters such as +.#',s,s', ... If is a tuple of a relation r, then 1[A,]
denotes the component of + which corresponds to the attribute A,. If t[A,] is not null, we
write I[A,}!.

We use the notation open to refer an open context null, and notation unk to refer
an unknown context null

An anlinown or open context null is called an indefinite value and a nou null value

or a dne null 1s called a definite value.

3. FUNCTIONAL DEPENDENCIES WITH CONTEXT NULL

In the classical theory, a functional dependency (FD) is a statement f : X — Y,
where XY are sets of attributes. A relation » over a scheme R(U) (with XY C U)
satisfies f (we sav also that f holds in) if for each pair of tuples #,.t5 € r such that
F[X] = t:[X]. we have t,[Y] = t,[Y].

Let #; and 75 be two tuples (may contains context nulls) over scheme R and A be
an attribute. We shall write #,[A] == t,[A]) if

1.t [A] 12[A]! and 1,[A] = £,[A]. or

2. t[A] = 6;,19[A] = é; and 7 = j, or

3. th1[A] = 3;,t2]A] = B and i = j, or

4. t1[A] = dne and t,[A] = dne.

By #,[X] == #,[X] we understand #,[A] == #;3[A], for all A € X.

|

16 Bui Thi Thuy Hien, Nguyen Calt Ho

Therefore. the meaning of comparison operator == is just to check the svimbolic
equality of values in the database. For instance 3 == 3:8, == 6,3, == /4, and dne ==
die.

Contrary to comparison operator == is the comparison operator = /=. For example

J=fadib=]=80=]=g.

In databases with incomplete information, a natural question arises at this junctie
is that: what is the truth value of r = gy if &+ or y or both ae nudl? In (91 Codd has
introdnced a three-valued logic {0.w. 1} for using to exploit data from databases that mav
contain mull values. In the case of context nulls, we adopt a five-valued logic to compare the
values in a context null database. The following table shows us the truth value assigniens

to such comparison:

= a b d; 3, B, B, | dne
a] 0 o ® ® o 0
b 0 1 © ® o | o 0
d, o |o | & LE & |& 0
0, w w & & b & 0
Bi w | o | & & &g 18| &
B; o |0 | & & | & [& £
dne 0 0 0 0 E E 1

Iig. 1.

If we define ¢ a truth value assignment to a comparison between any two values m a
context null database, then we have o{a = b) = 0y v(a = dne) = 0;0(8; = 6;) = £7; Pl &
6,) = &i(a=a)=1;0(dne =dne) =1; ...

We now extend the concept of functional dependency in a context null database,

Definition 1. Let R(U) be a velation echeme; X Y C IJ:= bhe a truth valne f: X =¥
is said to be a functronal dependency with contert nulls over R(U) (cukD) it for cach
context null relation i~ over R(U) and for each pair of tuples t, ¢, € 7 such that (1] X] =

t,|X]) > ¢, we have v(t,[Y] = H[Y]) > c. It € = £ we write X — Y instead of X S Y
Proposition 1. v(t,[X] = t2[X]) > & if and only if t[X] == t5[X].

Proof. The proof is directly deduced from the definition of function v and comparison
operator == .
From Proposition 1, it follows that Definition 1 is equivalent to the following one:

Definition 2. Let R(U) be a relation scheme and X, Y C U;f :+ X — Y s said to
be a functional dependency with contert nulls over R(U) (enFD) if for each context null
relation r over R(U) and for each pair of tuples #,.t, € r such that t[X] == t2[X]. we
have 11[Y] == &[Y].

In this paper, we restrict ourselves to investigate functional dependencies under
E r . ‘
context nulls X = Y with ¢ = £, i.e., cnFDs of the form X — Y.

Functional dependencies with context dependent null values ... 17

r A B C

d, B, 2
5, B, 2
Fig. 2.

Example 1. The relation r given in Fig. 2 satisfies functional dependency A — B

Let F be a set of data dependencies, a data dependence f is called a logical conse-
quence of F' if any relation r satisfies F' then it also satisfies f.

We denote F'* = {f | f is a logical consequence of F}.

Given a set of inference rules, set £+ = {f| f is deduced from F by means of the
inference rules }.

The set of inference rules is said to be sound if (F* € F*) and to be complete if
(F* = F*),

It is well known that for functional dependencies in the relational model without
nulls, the following is a sound and complete set of inference rules:

Ayp) reflexivity: If Y C X then X — Y

Ay) augmentation: If X — Y then XZ - YZ

As) transitivity: If X - Y and Y — Z then X — Z.

From rules A, Ay, A3 we can deduce the tollowing two rules:

Ag) union: f X - Y and X - Zthen X - YZ

As) decomposition: If X — Y Z then X — Y.

According to Definition 1 (or Definition 2) it is easv to see that reflexivity, augmenta-
tion. transitivity, union and decomposition rules are sound also for functional dependencies
with context nulls.

For convenience, we recall here the following notion: The closure X+ of a set of
attributes X' with respect to a set F' of functional dependencies with context nulls is
detined as tollows:

Xt ={A| X — Ais deduced from F by meaus of the inference rules Ay, Az, A3}

By the rules of union and decomposition, it is clear that X — Y is deduced from

I by means of the rules if and onlv if Y € X+,

Theorem 1. The rules Ay, Ay, A3 form a sound and complete set of inference mles for
functional dependencies with context nulls.

Proof. a) Sounduess of these rules has been shown above.

b) Completeness: Let F be a setof functional dependencies with context nulls over a
scheme R(U). F* = {f | f is logical consequence of F}, F* = {f | f is deduced from F by
means of Ay, A,, Az}. Since 4, Ay, Ay are sound, we have F* C F"._ [t remains to prove
that F* C F'", that means we need to show: if f € F* then f € F*. This is equivalent to
show that if f ¢ F'* then f ¢ F*.

Assume that g+ X — Y is a coFD and g € F*. Let r be a two tuple relation
{t|.t2}, where

VA; € U, then t;[A;] =1 or

t [A;] = 6; or

18 But Thi Thuy Hien, Nguyen Cat Ho

fl[f'l,l = 3; or
t1[A,] = dne,

YA; € X1 then t,|A,] == J‘l{.l‘ll}

VA; € U\ X7 then t3[A;] = / = t[A,]

(1) r satisfies all the dependencies in F: Let (V' — W) € F, assume V' — W is not
satisfied by 7, i.e., t;[V] == t2[V] and ,{W] = / = #5[W]. From t1{V] == 12[V] we have

V C Xt. From t,[W] = / = to[W] it implies that " must contain at least one attribute
in U\ X*, say A. Thus, 34 € W such that A ¢ X7 (x). Since VC X7 we conclude that
(X — V) € F* Indeed, from (V — W) € F, it follows by Aj that (X - W) e F, and
so W C X ™. But, it is impossible because of (*). Hence, r satisfies all the dependencies
in F. '

(2) r does not satisfv g : Assume the contrary that r satisfies ¢ : X — Y. From
X C Xt we deduce t;[X] == #2[X] and hence, X — Y. Thus, we have t1[Y] == ta{¥]. It
implies by definition of #;.#, that ¥ C X, So, (\ — Y) e F* a contradiction.

Therefore, F* C F*. Combining with F* C F* we have F* = F*.{$

4. SOME RULES TO MAINTAIN THE SATISFACTION
OF FUNCTIONAL DEPENDENCIES IN CONTEXT NULL DATABASES

According to the semantic approach to context nulls, context null values is defined
by well-known information. The set of functional dependencies are, of course, very impor-
tant well-known information to define context nulls. That means, context nulls have to be
defined and handled to ensure that the database with context nulls under consideration
still satisfies a given set of functional dependencies. Hence, while implementing the data
update procedures, the svstem has to maintain the satisfaction of functional dependencies
in the database. To obtain this objective, some rules for handliug context nulls need to

be obeyed

Definition 3. Let r be in Rel;(R), X — A be a enFD over R, t; and t; be two tuples of
r such that t;[X] == t2[X],

- If t,[A]!, 15[A]! and #,[A] = / = t5[A] then r has a hard violation of X — A aul,
t; and ty are said to cause a hard violation of X — A,

- If t1[A] = / = t2[A] (*) and one side of (*) is dne and the other side is not an
open context null then r has a hard violation of X — A.

-1f t1[A] = / = t2[A] (*), t; and t; do not cause a hard violation of X — A and at
least one of two side of (*) is null then r has a soft violation of X — A and, #, and 1, are
said to cause a soft violation of X — A.

Example 2. Let X*— A is a cnFD over R and consider two tuples t; and #; of r and
suppose that t,[X] == t,[X], then,

- if t,[A] = 1,#3[A] = 3 then r has a hard violation of X — A

- if t;[A] = dne, t3[A] = 6, then r has a hard violation of X — A

- if t1[A] = dne, t3[A] = 1 then 7 has a hard violation of X — A

Functional dependencies with context dependent null values ... 19

- if t,[A] = dne, t3[A] = 3, then r has a soft violation of X — A

The function VIOLATION in Algorithm 1 will check whether two tuples #; and to
cause a violation of the ecnFD X — A.
Algorithm 1. VIOLATION (r t;,t,0 X — A)
Input : » € Rel{(R),X — Ais a cuFD over R, t; and t; are any two tuples of r
such that #,[X] == [X].
Output : 2 if t; and f, cause a hard violation of X — A; 1 if t; and #, cause a soft
violation of F'; 0 otherwise.
Begin
VIOLATION =
if (t1[A]! and 1,[A]! and t,[A] =
else if (t;[A] =/ = t5[A]) and ((#
and (t2[A] = / = open) (to
then VIOLATION := ‘2:
else if (t,[A] = / = t3[A]) then VIOLATION :=
End.

ta[A]) then VIOLATION := 2
[A] == dne
2[A] == dne) and (t;[A] = / = open))

Definition 4. A context null database is said to be consistent with a given set F' of

functional dependencies if there is not any hard or soft violation of F in the database.

Definition 5. Let DB be a context null database and » be a relation in DB and F be
a set of enFDs over R Assume that t; and #, are anv two tuples in r that cause a soft
violation of an X' — 4 in F. A soft violation removal that is caused by #; and ty in r (or
e DB 1s dehined as follows:

L. If one of the two values #[A] and f,[A] is not null, (sav f,[A]) and the other
(15[A]) is either an unknown context null or an open context null, then everyv occurrence
of the null value f,[A] in » (or in DB) is changed by t,[A].

2 If one of the two values II[A\} and #,[A] o cither o dre null o1 an unknown context
nll (say #[A]) and the other value (#,[A]) is an open context null, then every occurrence
of the open null (£,[A]) inr (or in DB) is changed by #,[A].

3. If both #[A] and #,[A] are either unknown context nulls or open context nulls,
then every occurrence of the one with greater index (say #5[A]) in 7 (or in DB) is changed
bv the other with smaller index (t;[A]).

Example 3. In the cases below, the soft violations in » (or DB) will be removed as
follows:

If £[A]" and 1,[A4] = 8, then every occurrence of 8, in r (or in DB) is changed by

t[A].

If t,[A]! and t,[A] = 3, then every occurrence of 3, in 7 (or in DB) is changed by
ta[A].

If t)[A] = dne and ty[A] = 3, then every occurrence of 3, in r (or in DB) is changed
by dne.

If t)[A] = 6, and t,[A] = 3, then every occurrence of 3; in r (or in DB) is changed
bv é;.

20 Buir Tht Thuy Hien, Nguyen Cat Ho

If +,{4] = 6,,t2]A] = 6, and i < j then every occurrence of 6, in r (or in DB) is
changed by é,.

If t1{A] = 8,,t,[A] = 3, and i < j then every occurrence of 3, in 7 (or in DB) is
changed by 3,

Before presenting an algorithimn for removing a soft violation that appears in a
relation or in a DB, let us first show an algorithm which changes every occurrence of a
null value in a relation (or in a DB) to a definite value or to a more information null value.
The algorithm CHANGE in Algorithm 2 changes all the value r at the column of attribute
Ain M(M =r or M = DB) to value y.

Algorithm 2. CHANGE(r, A, M, y)
Input : r € Rel;(R), M is a context null database or M is a relation 7, A is an
attribute column under consideration, = and y are two values (may be null)
at the attribute column A.
Output : Change every occurrence of value 7 at attribute columin A in M to value y.
Begin
For each relation r in Al do
For each tuple t in r do
if t{A] == 1 then t[A] .=
End;
The algorithm for removing a soft violation in a relation or in a DB is presented as
Algorithm 3.
Algorithm 3. REMOVEVIO(M.t, t,, X — A)
Input : r € Rel{(R), M is a context null database or M is a relation r, X — Ais a
cnFD over R and, ¢, and t, are tuples which cause a soft violation of X — A.
Output : Remove the soft violation caused by f; and #,.
Begin
it 1 [A]! and ty|A| == unk then
begin &+ = t,[A; CHANGE (x, A, M, t,[A]), end,
if #2[A]! and t,[A] == unk then
begin 7 :=t1[A; CHANGE (x, A, M, t3[A]); end;
if t1[A]! and t2{A] == open then
begin := to[A]; CHANGE(z, A, M, t,[A]); end;
if t,[A]! and t,[A]'== open then
begin = := t,[A]; CHANGE(x, A, M, t5[A]); end;
if t)[A] == dne and ty[A] == open then
begin = := t[A], CHANGE (x, A, M, dne); end,
if t[A] == unk and t;[A] == open then
begin = := ty[A};y := t,[A], CHANGE((x, A, M, y); end,
if t2[A] == dne and t,[A] == open then
begin 1 := t,|A; CHANGE (r, A, M,dne); end;
if t2[A] == unk and t,[A] == open then
begin = :=t,[A};y := t2[A]; CHANGE (x, A, M, y); end,

Functional dependencies with context dependent null values ... 21

if (t1[A] == unk and ty[A] == unk) or (t,[A] == open and #,[A] == open) then
begin :
1=t [A]; y = ta[A];
if index(r) > inder(y) then CHANGE (v, A, M, y)
else CHANGE (y, A, M, 1)
end;

End.

Lemma 1. Let r be in Rely(R),F be a set of cuFDs over R. If two tuples t; and t, of

/

r canuse a soft violation of F aud r’ is the relation deduced from r by moving the soft

violation caused by ty aud ty. then " > r.{

Proof. Bv Dehfinition 5. if a soft violation is removed then:

(i) The definite values in r are unchanged.

(ii) Each null value in 7 is either unchanged or changed to a definite value or changed
to a more information null value.

Combining (i) and (ii) we have r' > 1.0

Theorem 2. Let DB be a coutext null database, r be a relation in DB and F be a set
of cuFDs over R. If the following conditions hold:

1. In DB, there is not any hard violation of F.

2. All the soft violations of F that appears in DB can be removed such that in DB
there is not auy hart violation of F.
then DBaa © DBy

Proof. Directly deduced from Lemma 1.

Lemma 2. Let r be in Rel (R), F be a set of eunFDs over R, t, be a tuple over R. If the
following couditions hold:
in o there is not any hard violation of F
- between t and r there is not any hard violation of F,
- between t and r there is a soft violation of F,
then after removing this soft violation, we have:
(i) in r there is not any hard violation of F,

(ii) between t and r there is not auy hard violation of F.

Proof. Suppose t’ is a tuple of r,t and #’ cause a soft violation of X — A in F. When
removing a soft violation between t and 7' | there are two the following possil;ilities:

Case 1: The tuple t is to be changed at the value t[A] and the tuple t' is kept
unchanged:

In this case, the relation r is not changed. By the first condition of the assumption
we have (1).

To prove (ii), we suppose the contrary, that there is a tuple f; of r such that ¢ and
t, cause a hard violation (HV) of F. Since t is only be changed at value t[A] and in the
initial relation r there is not any HV, so if t+ and #; cause a HV of F then such HV must
be HV of enFD X — A. Since after removing the soft violation (SV) between t and t’ we

22 Bui Thi Thuy Hien, Nguyen Cat Ho

have t[{A] == t'[A];#[X] == #'[X]. if and t; cause a HV of enFD X — A. then ' and ¢,
also must cause a HV of enFD X — A. This contradicts (1).

Case 2: The tuple t' is changed at value t'[A] and the tuple t is kept unchanged:

(i): On the contrary, suppose the assertion (i) does not hold.

Bv the first condition of the assumption, there is not anv HV in r, therefore, if a
HV that appears in r after removing the SV between t and ¢’ then such HV must be the
HV between ' and a tuple t; of ', Since # is only changed at value t'[A], the HV between
t" and #; must be of cnFD X — A. Since after removing the SV between t and t' we have
t[A] == #'|A] and t{X] == #'[X], if #' and t, cause a HV of ecnFD X — A then ¢ and #,
cause also a HV of enkD X — A, Clearly, t; is the tuple of r before removing the SV
bhetween t and #/. This contradicts assumption that t and r do not cause any HV of F.

(11): Since the tuple ¢ is kept unchanged. so for any t; € ', and if t; # t'. t and t; do
not cause any HV of £ It remains to check that whether t and ' cause a HV of F or not?
Suppose. t and t' cause a HV of enFD Y — B. Because after removing the SV between
t and ' the tuple #' is ouly changed at value t'[A], the initial tuples # and #' must cause
also a HV of enFD Y — B. This contradicts the second condition of the assumption.§

Theorem 3. Let r be in Rely(R), F be the set of cuF'Ds over R, t be a tuple over scheme
R. If the following conditions are satisfied:

- in 1 there is not any soft or hard violation of F.

- between t and r there is not any hard violation of F. then after removing all the
soft violations appear beween t and r. we have:

(i) I v there is not any hard violation of F.

(ii) Between t and r there is not any hard violation of F)|

(iii) I r there is not any soft violation of F.

Proof. (i) and (ii): Cousider any tuple # in r and suppose that t and t' cause a SV of F.
Dy Lemma 2, after rcmoving the SV between £ and 11, we have,

- in r there is not any HV,

- between r and ¢ there is not any HV.

Applyving Lemma 2 to the tuple t and the relation » until all the SVs between anid
r are removed, we obtain (1) and (ii).

(i11): Assume the contrary, that after removing all the SVs between ¢ and r, there
are a cnFD X — A in F and two tuples t' and #; of r such that #' and 7, cause a SV of
X — A. Then, ¥'[X] == t,[X] and #'[A] = / = t,[A] (1). Since there is not any SV in the
initial relation r. the appearance of the SV between t' and #; shows that at such a time
either ' and t or t; and t do cause a SV of ecnFD X — A. Indeed, suppose the contrary
that, both t' and t, #; and t does not cause any SV of enFD X — A. It shows that the

values t{A] and #,[A] are not changed. Since there is not anv SV in the initial relation r, if

t'[X] == t,[X] then t'[A] == t,[A] which contradicts (1). Therefore, at such a time either
" and t or t; and t must cause a SV of enFD X — A, that means, t[X] == t'[X]. Since
all the SVs between t and r have been removed and +HX] == #'[X], we get t[{A] == t'[A]

and t[{A] == t,[A]. It follows that t'[A] == t,[A], a contradiction to (1).{

Functional dependencies with context dependent null values ... 23

Bv the Theorem 2 and the Theorem 3', in order to maintain the consistency of a
context null database, it is necessary to introduce the following two rules for updating and
inserting data:

Rule 1. (For updating data)

Let DB be a context null database and » be a relation in DB; F be a set of enFDs
over R. Let t be a tuple of r that needs to be updated to become t;:

(i) If there is a tuple t' in r\ {t} that #; and #' cause a hard violation of F' then the
system will not implement the update procedure for the tuple .

Conversely, if (i) is not satisfied:

(1) For each X — A in F. the system will implement checking:

For each tuple #' in v\ {t}. if t; and #’ cause a soft violation of F' then the svstem
will remove that soft violation.

When all soft violations between r \ {#} and the tuple #; have been removed, the
system will implement updating the tuple t to become the tuple t,. .

The aim of Rule 1 is to maintain the database under consideration to be consistent
with a given set F’ of functional dependencies, i.e., Rule 1 ensures that updating procedure
does not cause any violation of F. Hence, the Rule 1 is said to be correct if it realizes this

aim.
Proposition 2. The Rule 1 is correct.

Proof. The proof of (i) is straightforward.
For (ii): Let ' = r\ {#}. Rule 1 shows that:
- There is not any HV and any SV in »’,
- t and r does not cause any HV of F,
By application of Theorem 3 to the velation r and the tuple ¢, all the SVs between
roand t can be all removed so that:
(i) There is not any HV of F in +/
(i1) There is not anv HV of F' between r and t.
(ii1) There is not any SV of F in 1’
Therefore, Rule 1 is correct, by Theorem 3.0
Algorithm 4 below uses Rule 1 to update a tuple ¢ of relation r to become a tuple
tll ‘
Algorithm 4. UPDATE((r, F,t,t))
Input : r € Rel;(R), a set of ecnFDs F over R, a tuple t; over R, a tuple t of r that
need to be updated to become the tuple #,.
Output : Update the tuple t to become ¢t if there is not any HV of F' that appears
between r \ {t} and t,, do not update if otherwise.
Begin
=7\ {th
For each X — A in F do
For each tuple t in 1’ do
if t{X] == t,[X] then

24 Bui Thi Thuy Hien, Nguyen Cat Ho

if VIOLATION (v',t,t;, X — A) = 2 then exit;
For each X — A in F do
Repeat
mark:—0;
For each tuple f in " do
if t{X] == #,[X] then
if VIOLATION((r',t,t;. X — A) =1 then
Begin
REMOVEVIO(DB.t,t'. X — A);
mark =1:
End;
Until mark = 0,
e U b
End.

Example 4. Consider the relation r(ABC'D) given in Fig. 3 and a set of functions F' =
{A—-C,C— D}

r A B & D
t a b, C dne
t, a 82 dne dl
t3 a, b, Cy dne
Fig.3.
Suppose that the svstem is required to update the tuple t5 = (a;. by cp.dne) to
become a tuple + = (a1, by, ¢;.4). Since t{('] == +;[C] and t{D] == 4,4,[D] == dne. t and

t; cause a HV ot F o . 'Therefore, the svstem does not updaie the taple £33 10 the taple
t bv the Rule 1.
Rule 2 (For mserting data)

Let DB be a context null database and r be a relation in DB, F be a set of enl'Ds
over R. Let t be a tuple that needs to be inserted into r.

(1) If there is a tuple t' in r such that t and #' cause a hard violation of F, then the
svstem does not implement the insert procedure for the tuple .

Converselv, if (i) i1s not satisfied, then

(1) For each X — A in F. the svstem will implement checking;:

For each tuple t in . if + and #' cause a soft violation of F' then the svstem will
remove that soft violation.

Whenever all soft violation between r and the tuple ¢ have been removed, then the
svstem will implement inserting the tuple t into relation r.

The aim of Rule 2 is to maintain the database under consideration to be consistent
with a given set F' of functions, 1.e.. Rule 2 ensures that inserting procedure does not cause

anv violation of F. Hence, the Rule 2 is said to be correct if it realizes this aim.

Functional dependencies with context dependent null values ... 25

Proposition 3. The Rule 2 is correct.

Proof. The proof is similar to that of Proposition 2.{
Algorithm 5 uses Rule 2 toinser: the tuple t into relation r.
Algorithm 5. INSERT (r, F' t)
Input : r € Rel{(R), aset of cnFs F over R, a tuple t which needs to be inserted
into relation r.
Output : Insert the tuple t into r if there is not any HV of F that appears between r
and 1, do not insert if otherwise.
Begin
For each X -~ A in I’ do
For each tuple ' in 1 do
if #[X] == t[X] then
if VIOLATION (r,t,t', X — A) = 2 then exit;
For each X — A in F do
Repeat
mark:—=0;
For each tuple t' in 1 do
if /[X] == t[X] then
if VIOLATION(r,t,t', X — A) = 1 then

Begin
REMOVEVIODB, t.t'. X — A);
mark =1;
End;
Until mark = 0:
i {f}:

End

Example 5. Consider a relation r(ABC'D) given in Fig. 4 and a set of functions F =

L4 s €0 =]

t) a b d B
t; a, 5, dne d,

Fig. 4.

Assume that a tuple t = (ay. by dne.dy) needs to be inserted into redation r. Since
t1[A] == t[A] but t{C] == dne and t,[C] == §;, by Definition 2, t ‘and #, cause a HV of
A — C i r. So the tuple t do not be inserted into r by the Rule 2.

Assume a tuple t = (ay, by, ¢;.dne) needs to be inserted into relation r. Since
ti[A] == t[A] but t{C] == ¢; and ,[C] == é;, by the Definition 2. t and #; cause a

4

26 Buir Thi Thuy Hien, Nguyen Cat Ho

r A B C D

t a b, C dne

ts a, 5, dne d

tj; a) bg C dne
Fig §.

SV of A — C in r. By Rule 2, the svstem will remove the above soft violation by chang-

ing #,[C] to ¢;. When changing #,[C] to ¢;. since H[C] == t{C'] and t[D] == dne and
t[D] == 31, the tuples t and t; cause a soft violation of ' — D in r. This SV will be

removed by changing t,[D] to dne. Then there is no any HV and SV of F' that appears in
r. Bv Rule 2, the tuple t will be inserted into r. The Fig. 5 presents the obtained results.

Theorem 4. A context null database always is always consistent with a giveu set of
functional dependencies if it obeys Rule 1 and Rule 2.

Proof. As a direct consequence of Lemma 1 and Lemma 2.$

5. CONCLUSION

In this paper we have presented an extension of the concept of functional dependency
to a framework in which the presence of null values is allowed under the context dependent
interpretation. Functional dependencies with context nulls have been defined and valid
inference rules have been presented. It is shown that the set of Armstrong’s inference rules
forms a sound and complete system of axioms for functional dependencies with context
nulls as well. This allows us to utilise functional dependencies as a design tool for relational
schemes in presence of context dependent null values. The results in the paper show that
sets of funclional dependencies are also tuportant well-known information to define the

values of context null.

REFERENCES

1. W.W. Armstrong. Dependency structures of database relationships, Proceedings of
the IFIP Congress, Stockholm, 1974, 580-583.

2. P. Atzeni and N. M. Morfuni. Functional Dependencies in Relations with Null
Values, Inform. Process. Lett. 18, May 1984, 233-238.

3. P. Atzeni and N. M. Morfuni. Functional Dependencies and Disjunctive Existence
Constraints in database Relations with Null Values, in “11"* Colloq. Automata,
Lang. Programming (ICALP)”, Lecture Notes in Comput. Sci. Vol. 172 (1984) 69-
81.

4. P. Atzeni and N. M. Morfuni. Functional Dependencies and Constraints on Null
Values in Database Relations, Academic Press, New York and London, 70 (1), July
1986, 1 - 31.

Functional dependencies with context dependent null values ... 27

33

. E. F. Codd. Extending the database relational model to capture more meaning,

ACM TODS, 4 (4) (1979) 397-434.

6. B. 5. Goldstein. Constraints on Null Values in Relational Databases, in “Proc. 7'"
Internat. Conf. on Very Large Data Bases”, IEEE Computer Society, Los Angeles,
1981, 101-110. .

7. Bui Thi Thuy Hien. Relational databases with context dependent null values, Jour-
nal of Computer Science and Cybernetics 15 (1) (1999) 20 - 30.

8. Nguven Cat Ho, Le The Thang. The semantic of data in databases with incomplete
information, Journal of Computer Science and Cybernetics 11 (2) (1995) 7-15.

9. Nguven Cat Ho. A relational model of databases with context dependent null values,
Bull. Pol. Ac. Tech., Vol. 36 (1-2) (1988) 77-90.

10. Nguven Cat Ho. Context Dependent Null Values and Multivalued Dependencies in
Relational Databases. Bull. Pol. Ac. Tech., Vol. 36 (1-2) (1988) 91-105.

I1. M. Levene and G. Loizou. The additivity problem for functional dependencies in
incomplete relations, Acta Informatica 34 (1997) 135-149.

12. Y. E. Lien. On the Equivalence of Database Models, Journal of the ACM 29 (2),
April 1982, 333-362.
13. D. Maier. The Theory of Relational Databases, Computer Science Press, 1983.

TAP CHI KHOA HOC DHQGHN, KHTN, t.XV, n’5 - 1999

PHU THUOC HAM VOI NULL NGU CANH
TRONG CO SO DU LIEU QUAN HE

Bui Thi Thuy Hién
Khoa Todn - Co- Tin hoc - Dai hoc KH Tir nhién - DHQG Ha Noi
Nguyén Cat 11O
Vien Cong nghe Thong tin - TTKH & CNQG

Muc dich eva bai bdo nay la md rong khai niem phu thuoe ham trong co sé dir lieu
quan hé ¢6 null ngr canh. N6 chi ra, duéi ngtr nghia cua null ngtr cdnh, cdc qui tdc suy
dién cia Armstrong tao nén mot hé tién dé xdc ddng va d&y du cho phu thudéc ham. Mot
vai qui tac va thuat toan dé thao tac null ngir cAnh cing dwoc gidi thiéu va kiém tra.

