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Abstragct: The main object of the study is a measure of dispersion, is named the
Mean Absolute Deviation (or MAD, for short) of a random variable X, 6,(X) =
E(| X — w |). The basic properties of the MAD and some detailed computations
on the MAD are established. We also focus on the applications of the MAD in the
Limat Theorems, when the role of the standard deviation o,(X) = [E(X - p)Q]l'/Q
is played by 6, (X ).

1. INTRODUCTION

Let X be a random varnable with finite mean E(X) = pu. The standard deviation
of X, denoted by 0,(X) = [E(X — p)?]'/?, is very well-known in the probabilistic and
statistical literature as a measure of dispersion. Especially. its widespread use has been
presented in theory of limit theorems, in sampling theory, in the analysis of variance and
statistical decision theory (see [1], [2], [3], [6] and [7] for complete bibliography).

On the other hand, although plaving a domdnant role 1 functional analysis, the
mean absolute deviation (or MAD, for short) of X. denoted by 6,(X) = E(| X — p]), has

seen relatively few applications in probability and statistics. In the traditional terminology,

8a(X) is said to be the first absolute moment of a random variable X (see [1], [2]. [3] and
(8] for the definition). Probably, their computational complexities are not convenient to
use, especially when the random variables are discrete (see for instance Section 2).

However, from the inequality 6,(X) < ¢,(X) for an arbitrary random variable X
(see Proposition 2.5), the question arises as to what happens if the role of the standard
deviation ¢, (X) is played by 0, (X).

In recent vears some results concerning the MAD have been investigated by Pham-
Gia THU, Q. P. DUONG and Turkan N. ... in some topics of statistics, econometrics,
reliability theory and Bavesian analysis (see [4], [5] and [6] for more details).

The main aim of this note is to present the basic properties of the MAD of a random
variable about its mean é,(X) and applications in the limit theorems, when the role of
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the standard deviation o,(X) is played by ¢,(X).

More specifically, in Section 2 we review some of main properties of the 6,(X)
and some illustrative computations on MADs are also presented in this Section. These
results are received by using the Lemma 2.1 in Section 2 and they are independent with
ones of Pham-Gia THU and Turkan N in [4], [5] and [6]. For making the important role
and usefulness of the MADs more apparent, in the Section 3 we will consider some results
concerning the limit behaviours of the Bernoulli and Poisson distributed random variables.
In addition, some results on Weak Laws of Large Numbers, where the classical conditions
are directly imposed on the 8,(X ), are also established.

It is worth pointing out that the received results from the Lemma 3.1 and Theorem
3.3 in last section only are reformulations of the well-known classic Weak Laws of Layge
Numbers (we refer the readers to [1]. [2], [3], [7], [8] and [9]), but we did not really have to
use the assumption on independence of the random variables. In addition, the existence of
the first absolute moment (the mean absolute deviation) in replacing the second moment
(the standard deviation) is to be in concord with some practical problems.

2. SOME COMPUTATIONS ON THE MADs

Throughout this paper we shall continue using the notations are as in [4], [5] and
[6]. Let 6,(X) = E(] X — a |) denote the MAD (about an arbitrary the point a) of a
random variable X. When ¢ = E(X) = p, we have the MAD about the mean, denoted by
6, (X)), and for a = Md(X) (where Md(X) denotes the median of X) we have the MAD
about the median, denoted by dprq(x)-

At first we will review some basic properties of the 6,(X) and Onracxy-

Proposition 2.1

(1) 0.(X) =0 for any random variable X and for all points a € R.

(i) ‘/4( N ta)=0o6,( ‘\) Jor all a « R.

(11) 6 ) =|c|é.(X) for any real c.

(iv) ( X +¥) < o (‘() + 6,(Y) for two arbitrary random variables X and Y.
(v) For an arbitrary random variable X

bara(x) S6u(X) < ou(X).

Proof. (i), {i1), (iii) and (iv) will be proved by using the direct computations from the
definition of the é,(X). For getting (v) we first observe that the median minimizes the
average absolute distance (see [1, p.201 | for definition of the median), so we have

Oaraqx) < 6,(X)

for all X.
The second part of the inequality, 6,(X) < 0,(X), is obtained from the well-known
Schwartz inequality (see [7] for more details). ¢
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Lemma 2.1. Let X be a random variable with the distribution function Fx(x). Sup-
pose that the mean E(X) = p erits. Then

6,(X) =

o

/' (# ~ uidFyi{z) =2 / (g — r)dFx (1), (1)
T2 0 - <

and for the random variable X is discrete with the distributions py = P{X = xx};k > 1.

Z’IL—[I‘])A—QL A”HPI.ZQZ [~ Tk)P (2)

kiry>p kiry<p

Proof. By virtue of [ "> (r — p)dFy(x) = 0 it follows that

0u(X) = / (r — p)dFx (1) +'/ (u —x)dFx(z) =2 / (r — p)dFx(z).
> Jr<p Jr>p
In the same manner we can show that

Gl X e d / (pt — r)dFx (7).
A< U
Similar arguments apply to the case the random variable X is discrete with the
distributions pr = P{X = x4}, k > 1,

le‘ﬁ'““)‘ﬁzzl (rp — p)pr = QL(/L—J';C

K 2 K < i

and this finishes the proof. {

It is to be noticed that seemingly the formulae (1) and (2) are more easier to apply
for computations on the MADs than well-known result which is due to Pham-Gia THU
and Turkan N. in [5]. This is the main cause that we shall use the formulae (1) or (2) for
computing the MADs in the next chapters. The results in next section have been obtained
independently, if compare with ones in [4], [5] and [6].

Proposition 2.2. Let X be a general uniform random variable (see the Table 1 in
[6]) with the density function

5=, if 7 € (a,b)
. _ b—a
f(.‘[‘,(l.,b) - { 0, 7f7' ¢ (n'\b)

and the mean E(X) = 3=, Then we have 8.4 (X) = -;-
Proof. By virtue of (1 ) it is obvious that

(b —a).

. b-a
é%_b()(): i

It is worth noticing that, if b = # + a then §,(X) = g is same result in [6]. O
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Proposition 2.3. Let X be a power random variable with the density function (see
the Table 1 in [6])

flra)=0r*" ', a>00<e < 1.

Then "
/ 2 a  otl
h[{( = ( =
a+l a+1
: ; , ; : p— 3.
Proof. Applving the formula (1) with the expectation E(X) = [/ rf(ria)dr = =y b
obtain that
. T 0 _ 2 & 5
6,(X) =2 / [ = o™ Ly = f oo R
Jo & 4 1 a+l a+l
The proof is completed and the received result is as in [6] but by short wav.
Proposition 2.4. Let X be an erponential random variable with the density function

(see the Table I in /{_},/)
/{; )\) o /\(’7 ,\r" /\ > “l > ()

Then

e . ; o ; — +0c i
Proof. We now apply the formula (1) again with the expectation E(X) = »[“ Are~?dy =

1\ and the standard deviation o1 (X)) = l\ to obtain that
: ;

(X) = 2/ (r — i Jhate Mdr = 2N = 267 o (X))

1
o 1 s A
A
The proof is completed and the veceived result is as in [6] and in [8, p.224]. §

Proposition 2.5. Let X be a gamma distributed random wvariable with the density
function (see Table 1 in [6], Model 6 or [{]).

roe—1leF

flea, B =

3T (a)

v =00 —
¢

where a, 3 > 0,r > 0 and I'(a) = s

1 Ydr be the gamma function. Then

203
el(a)

O’L((\') =

where 1 = E(X) = af.
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Proof. It is clear that

(A -

Wir e pra+1)

] ['«)

—— (};f‘

g - e
1 = E 4\") = ”;"’_“_ / (
/ ( 1(“) J0 (

T
3
Note that we have used I'(a + 1) = al'(«). Applving (1) and a direct computation

shows that

=it

v i3 O m} 280"

o ¢ Fa
g AK) =T i — F) el = "
u(X) /0 (@8 =) Ze ) ™ = Flajen

This completes the proof. {

Proposition 2.6. Let X be a random variable of Pareto type. I (see [6: Table 1] or
[1: p. 275] for details) with the density function

Flatdg o) = ('l’.I'((;.I'M(“+ Da>1r>19>0.

Then
6#(X) = 2.1'0((_} _ 1)_1(1 — ““1)(1"1‘

where = EF(X) = &4

a—1"

Proof. 1t can be verified that

B O
= EBX)= / org e Tdy = ‘0.
ot

-
" o — 1

Taking (1) into account we get

o r
a-1"0 Y
(8]

{70~ wlarf sy~ Ve = Frgla— 11~ H1 —a™ 17,
X

0,(X) =2 /
The proof is straight-forward. &

Proposition 2.7 Let X be a Poisson distributed random variable with the posit:oc.

integer-value mean E(X) =n,n > 0. Then

d 2 2 |
8,(X) = 2me ™" e [ 20 = 0, (X)1/ = & 0.797880, (X).
s

(12 m

where the sign ~ s used to indicate that the ratio of the two sides tends to unity as

n — +00.

Proof. Note that, the variance o2(X) also is the positive integer-value n.
By directly using the formula (2) from Lemma 2.1 we will show that
n A n
e iy o ,n -
plX ) = ‘ZL(H - ke " — = 2ne” " —.
; A n!

=)
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Using the Stirling’s formula n! = V270" " 2e ", (see [2: p. 50| for detailed discus-
8 2 !
sions), we get

n" [o 2
8,(X) = 2ne” ”'—7 ~ ) —n= (7,,()()\/j ~ 0.797880,(X ),
n! s T
where the sign ~ is used to indicate that the ratio of the two sides tends to unity as
n — +o0o. {
For the general case, we note that as n — +o0,

where u = E(X) is the mean of X and (fﬁ(X) is the variance of X.

Proposition 2.8 (see [2, problem 35 p.226)). Let S,, be the number of success in n
Bernoulli trials with the mean E(S,) = np and the variance 0;2,71)(5,,) = wpg il < p.<
l,p+q=1). Then '

, ., I /2 .y
(snp('sn) = E(! Se ~ np I) = \/ I . = _gnp(bn)-
m m

Proof. A direct computation from the formula (2) of Lemma 2.1 shows that

[np]
OnplSn) = E{| 85 ~np|) =2 z(np - EYCEp " * = DkgCrpF g™,

k=0 )

where k 1s the iteger number such that np < k < np + 1.
By continuity, using agam the Stirling's tormula, tor suthciently large n, we have

[ 2npy 2
hnp(sn) = [::(' ‘S'H —np I) o \/ == J‘;r’np(s‘n)-

m

This concludes the proof. ¢
The same conclusion can be drawn for this case, as n — +o0,

’X——p “
0.(X) T

where = F(X) i1s the mean of X and 0;{()() is the variance of X,

Proposition 2.9. Let X be a normal distributed random variable with the mean
E(X) = p and the variance Var(X) = aﬁ(X). Then

8,(X) = a“(X)\/g ~ 0.797880,,(X).
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Proof By using (1) from Lemma 2.1, an easy computation shows that

T dr = 0, \/ = 2 5. 797880, (X).

h,,(X)Z‘Z/ (v = p)
di o

In the same manner as above we can see that,

\/F

Lo (X

as was to be shown. §
3. LIMIT THEORENMS
From above Propositions 2.8 and 2.7 we can now present the following results.

Theorem 3.1 Let X1,Xo,....,X,,... beasequence of wdentically independent bino-
mial distributed random variables with the means E(Xy) = p. (0 <p <1) and the variance
Var(Xy) =pq.Vk=1.2,... .0 oet 5, = >j;j] Xy Then

S'n i b Sn ~ | Sn - | 2
L___,(_l :hiﬁ__ﬂi,\,\/_.
o(Sn) NG m

where the sign ~ is used to indicate that the ratio of the two sides tends to unity as
T =00,
This qives

15, — E5,)
\/2[’1*“_—‘%_’- )——! 1 as n— +oo.

Proof. It is easily seen that .S, be a nuuber of success of n first Bernoulli trials with
E(S,) = np and Var(S,) = npg. We now apply argument as in Proposition 2.8 again.
with X replaced by S, . to obtain complete proof. ¢

Theorem 3.2 Let X,. Xo.... . X,.... be a sequence of identically independent Pois-
son distributed random variables with the means E(Xy) = A, (A € Z%) and the variance
Var(Xy) = A Vk=1,2,.. , et 8 =5 i K. Then

4.5 — FE19,
RS

where the sign ~ is used to indicate that the ratio of the two sides tends to unity as

n — +00. This shows that
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Proof. It follows mmmediately that S, be a random variable of the Poisson law with the
parameter nA. A > 0, L(S,,) = nA, Var(S,) = nA. Analyvsis similar to that in the proof of
Proposition 2.7. with X replaced by S, we can finish the proof. &

Form now we will formulate some results concerning the weak laws of large numbers
when the role of the standard deviation o, (X) = [E(X — /1)2}1/2 are plaved by 6,(X).

Note that the following results are the restatements of the well-known classic weak
laws of large mumbers (see [11, (2], [3]. (7). [8] and [9] for the complete bibliography), but
based on the properties of MADs, we did not reallv have to use the assumption that the

random variables are independent.

Lemma 3.1 (Inequality of Chebvshev's stvle)
Let X be a random variable with finite 6,(X). Then, for all € >0

1
P{| X = E(X) |2 ¢} € =6,{X). (3)

Proof. The proof is based on the following observation for all € > 0

6,(X) = / | =g | dEx(r) > ¢ / AFx(x¥) =eP{| & = u > ¢}.

L)€ J =i
[he proof is completed. &

Theorem 3.3. (The Weak Law of Large Numbers for arbitrary random variables):
Let X . Xoo ..o .. \',,.... be a sequence of identically randoimn variables (are not necessary
mdependent) with 6,(X) < +o0o. Then, for all ¢ >0 and 0 < 6 < 1,

i i > (.} — () (LS 7 — OO,

where 8, = 3., Xi.
Proof. By virtue of inequality (3) and Proposition 2.5, for all ¢ > 0 and 0 < 6 < 1,

; (s/u.,(*svn) & ”(’7;4("\'1) & (S“(‘\:)'

2 ”1+r5(} S

0 <€ Pl S, - E(S,)

nltbe = pltbe — nbe
By getting n — +00 we have the complete proof.
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Muc dich chinh cia bai bdo nay la nghién ciru mot so tinh chat co ban cua do lech

tuyet doi trung binh ¢,(X ), thiet lap mot so tinh toan cu the lien quan to1 do lech tuyet

ddi trung binh ciia mot s6 phan phéi quen biét va buirde dau de cap téi mot s6 ing dung

cia do lech tuyet do trung binh 6,7 X)) trong mot s6 bai toan cua Iy thuyét xdc suat va
thong ke khi vai tro cia do lech tieu chuan o, (X) duoc thay thé bdi 8, (X).



