VNU JOURNAL GF SCIENCE. Nat . Sci . & Tech | T XIX, N,4, 2003

EVALUATION OF CPM - A COMMIT PROTOCOL
FOR MOBILE DISTRIBUTED DATABASE SYSTEMS

l.e Huu Lap

Pasts Telecommunications Institute of Technology
Nguven Khae Lich, Tran The Truyven

Rescarch Institute of Posts and Telecommunications

I. Introduction

Recent explosion of mobile computing has promoted the research and
development on mobile transactions, especially on distnibuted database systems
(MDDBS) |2, 3, 8. 10]. The MDDBS are tvpically built on top of wired-cum-wireless
network. which consists of mobile devices (such as PDA, laptop, ete) called Mobile
Units (MUY communicating with fixed network via Base Stations (BS) or Mobile
Support Stations (MSS) (Figure 1), Each BS has number of wireless communication
channels for MUs, which move and handoff from cell to cell. A distributed
transaction generally involves participation of several sites, which usually
distribute over the fixed network, but some of them may be in wireless network. For
the purpose of transaction study, the network can be viewed as a logical mess
(Figure 2).

Such MDDBS must execute commit protocols to ensure atomicity after the
transaction executions on data. Typically the commit protocols are based on
message passing between participants in the transaction, in one or more different
phases such as IPC (One-Phase Commit), 2PC (Two-Phase Commit) and 3PC
(Three-Phase Commity [4. 5. 10]. Unlike with fixed network, those protocols may
not work well in wireless medium and with the flexibihity of user mohihity for

various reasons [8, 10]:

o wireless connection is prone to failure due to the nature of radio

propagation hke fading, obstacle, and interference,
e MU has limited battery power, processing speed. and stable storage,
¢ handoff rate 1s unpredictable,
e limited wireless channels for sharing between MUs,

o typically the communication delay is higher due to unreliable physical

connections, and

e for database Participating sites are not usually 1in the same network

partition, thev are connecting for a short duration.

3D

36 Le Huu Lap, Nguyven Khac Lich, Tran The Truyen

In this paper we evaluate a new commit protocol - CPM (Commit Protocol for
Mobile) that 1s designed to over come some limitation of the most wrdely used 2PC
and to allow user-enahled disconnections and offline processing. Section 2 provldeq
a short review of several commit protocols and points out drawbacks of 2PC
mobile computing. Section 3 describes and analyzes the theoretical aspects of the
CPM. The next two sections present the modeling and simulation of the CPM.

BS/MSS Site A Site B O Site A
DBMS AT g
h ,, ‘l \ \\\
‘\]lr l /1’ ” \\ \\\
Q0

Site C

Figure 1: Generic physical model of MDDBS Figure 2: 1.ogical view of DDBS

2. Commopitment in distributed transaction processing
2.1. Transaction Models

There have been many transaction models proposed for mobile computing |2,
3, 12] that capture classical transaction management features such as concurrency
control and recovery [1] and mobility. For the purpose of this paper, they are
assumed to already exist. A distributed transaction T initiated at a site consists of
number of fragments {T } which are distributed to participating sites to execute.
The generic transaction model considered n this paper consists of a set of
applhications {APP*/ for arbitrary k€ J} originating transaction T, at MUs. A T,
requires the involvement of a set of partiaipants {(P"/) € J, J={1.2,....m}} and a set of
corresponding transaction controller {TC'}. Each transaction controller TC' handles
commands related to transaction on behalf of participant . One of the TC' 1s
chosen to be the coordinator (CO) for coordinating the transaction in Master /Slave
fashion. There are no requirements on the location of TC' in the network and with
respect to P’ but the coordinator should be located in reliable wired network to
ensure satisfactory performince.

2.2. Commit protocols

It 1s a strict requirement of atomicity in database transactions, that a
transaction T, must either fullv committed or aborted at all participating sites. To

ensure this property, a commit protocol 1s executed by the transaction coordinator,

LEvaluation of CPM - a commit protocol for... 37

after all sites aintarm then completion of T Among the most widely deployed 15 the
Treo-Phase Commit (21°C) protocol, which we will deseribe 1in more detail in the next
sub section. Even thoush, 2PC 1< considered to be insufficient because of high
commit cost and potential of O blocking. There have been many attempts to
miprove the 2P°C and to propose alternatives to solve these issues. Some aim at
mintmizing costs of log wreiting and commumcations, 1in which PrC (Presumed
Commit) and Farly Prepare |9, 11] are of those noticeable, Other research inceludes
1PC and variants such as CLP (Coordiator Log Protocol), and IYVEP (Implicit Yes-
Vote Protocoly, 1PC 1gnares the PREPARE phase of 2PC but 1its assumptions are too
strict to be useful in commercial svstems. In contrast to those approaches, 3PC
(three-phase commit) introduces more cost and complexity by an additional phase o

help avoid the 17O blocking in 2PC.
2.3, Two phase commit protocol

The commit protocol, as its name indicates, has two phases: the first asks for

voting from all sites ready to commat, and the second carry out the commitment.

Phase 1. CO adds record <<PREPARE T,2> to the log, writes the log to stable
storage and starts a timer (PREPARE_TIMEOUT) then sends PREPARE message
to all TCY On recerving such a message, each TC decides whether or not to commit.
H the answer is NO, TC" adds record <<NO T, >> to the log and responses ABORT
T to CO. Otherwise. TC! adds record <<READY T, >> to the log and forces the log to
the stable storage. TC replies READY T, to CO.

Phase 2: Upon receiving READY T, from all TC' within timeout period. CO
force-writes T, log to stable storage. At this point, the fate of the transaction is
determined. CO then sends COMMIT T, to all TC'. In the bad case, the PREPARE
phase timeouts, CO Jogs T, and sends ABORT T, to all TC'. When TC' receives a
COMMIT or ABORT from CO, 1t writes the message to the log, then acknowledges
back to CO.

Despite the potential of blocking, the two-phase commit protocol 18 currently
the most widely used in practice for distributed database systems [10], However, it
may be difficult to applv in mobile distrnibuted environment. For example, the
mobile users may temporanly disconnect to process its transaction fragment offline
for saving power, and this action can lead to transaction abort, resulting in the high
abort frequency. This 1s because of a entical point in 2PC, that after transaction
executions finish, the deciston to commit rehies entirely on the chosen coordinator,
which may not be aware of mobile user preference. Once the CO decides to commit,
the connections need to be kept to avoid possible abort due to timeout. This can be
done rehably an high quahty wired network, but there are no guarantees in the

wireless

a8 Le Huu Lap, Nguven Khac Lich, Tran The Truven

In addition, 2PC may not be suitable for MUs with small memory because
they have to maintain a local log to handle CO’s demands at any time. Another
weakness of 2PC 1s due to its commit nature of 2 phases requiring 4p messages
(where p 1s number of participants), which are rather expensive in mobile
communications 1n term of time (and possibly monev since the mobile cost s
usually determined on the basis of connection time).

3. CPM - Commit protocol for mobile transaction models
3.1. The CPM Commit Protocol

In the light of above discussion, it is reasonable to mintmize the need to
communicate over wireless link and the number of messages passing in the network
per transaction. We proposed a novel commit protocol called CPM (Commit Protocol
for Mobile Transactions) that avoids the possible disconnections during the commit
process. In addition CPM enables user-proactive disconnection and offline
processing for arbitrary amount of time. The disconnection may be initiated by

MU'’s transaction controller before decision to commit 1s made.

Our commit protocol CPM operates under generic model presented in Section
2.1. Although each T(’ does not need to be at the same site as corresponding P, TC*
15 set at MU site to avoid possible complexity in local communication via wireless
medium. In CPM, the transaction controller of MU (TC*) where a transaction T, is
originated plays the role of coordinator in 2PC during transaction execution. It
divides the transaction T, into fragment set {T |, extracts its fragment T,, and force-
writes the transaction log to stable storage. Instead of sending the rest of
transaction T, — T, to coordinator as in 2PC, TC* distributes those fragments to
corresponding participants and starts a TRANS_EXEC timeout. Each participating
site executes its part and send completion message back to the requester.

If the TC* receives all such messages, it starts the commit process by sending
COMMIT_REQUEST message and transaction log to CO. Upon receiving commit
request and transaction log from TC*, CO fore-writes the log to stable storage and
sends COMMIT message to all participating sites. Each site then commits its

transaction portion T, and acks back to CO once finished. If all such

1
acknowledgements are received at CQO, the CO logs the transaction and sends
COMMIT_ACK message back to TC*. The transaction 1s completed from now on and
CO can forget about it. Note that there is no need to send COMMIT to TC* because
the COMMIT_ACK is always embedded in COMMIT_REQUEST beforehand. Thus

the number of messages passing wireless medium 1s minimized.

Otherwise the TRANS_EXEC timeout is triggered before TC* gets all
TRANS_ACK from P, TC* sends ABORT message to CO and TRANS_NOT_OK to

APP*. In this case, CO has not logged the transaction vet, so the ABORT message

Fraluation of CPM - a commit protocol for... 39

needs to carry all necessary mformation about the aborted transaction (.e. 1D of
participants (P, Using given information, CO multicasts ABORT messages to all

TC g = £ TC then tells ats corresponding P’ to abort.

As mentioned sbove, the participant PP and the agent TC acting on its behalf
are not necessarily at the same site, so during the comnut process, P' may fail and
mayv not verity the comnut with T, So TC! needs to use a COMMIT_EXEC timeout
when commanding Y. Upon receiving such command. P’ finishes its transaction
portion and then log-writes a “commit”. The transaction portion is done. If the
nmeout 1s passed and 1" has not confirmed the commit, TC" assumes the failure of
. TC then checks the existence of “commit”™ log at P'. If the log does not exist, the
T¢ tell P to redo the transaction execution and commait procedures.

Once receving COMMIT _ACK from CO. TC* sends TRANS_OK to APP* the
whole transaction 1s fully completed. The CPM can be expressed semi-formally 1n
term of pseudo code as in Figure 3-Figure 6.

Activinies ar APP:
begin

send tranmsaction T ot TC‘
wait until receiving Lastruction from TC"
if(the instruction is TRANS OK)
start new transaction after a time interval
else /the transaction 1s aborted
restart transaction after a time interval
end

Figure 3: CPM algorithm at application APP

Activities at TC':
Begin

" k . . . k
J.f('!“le receive a transaction T,) //this plays the role of TC
begin

¥
TC send T. to the scheduler and then get {fragments (T, |

TC write all <<LOG T, >> to RAM
S .
TC e&xtract 1ts portion T,
k .
TC send the rest {T - T,,}] to all corresponding P’

TC process its portion T,

TC start timer and wait for confirmation from (P}

o

if(rimeout && TC not receive all TRANS ACK,, of T,)
begin
TCk sennd ABORT T to CO
k
TCk send TRANS NCT _OK T, to APP
end

else /T~ receive 3.1 TRANS ACK

40 Le Huu Lap, Nguyen Khac Lich, Tran The Truyen

begin

TCk send COMMIT T,, all <<LOG T, ,>>
and its ack cof fragment T,, to CO

TCk wait for response from CO

if(TCk receive COMMIT ACK T, from CQ)

TCk send TRANS OK to APPk
end
end
//From now on TC plays the rcle of TC
alse if{TC' receive COMMIT T, from CO)
begin
TC' send record <<COMMIT T .>> and command COMMIT T, to P
TC start timer and wait for ack of T,, from P
if(TC receive commit confirmation of P')
TC' send COMMIT ACK T,y to CO
else //timeout :
begin
//P fails
TC' check log at P’
if (exist the log <<COMMIT T,,>>)
send COMMIT ACK T,. to CO
else :
TC' ask P’ to redo the transaction portion T,,
based on lcg from CO
end
and
else //TCj receive ABORT T,, from CO
send ABORT T,, to P!
end

Figure 4: CPM algorithm at transaction controllers (TC* & TC?)

Activities at P:

begin

if (P’ receive transaction fragment T, from TC")
begin
execute T,,
send TRANS ACK T,, back to TC"
wait for commit from corresponding TC’
end '

else if (P receive COMMIT T, from TC)
begin
commit the portion T,,

fore-write log <<COMMIT T,,>> to stable storage
end

else if (P receive ABORT T,, from TC")
abort its portion T,

and

Figure 5: CPM algorithm at participant P

Evaluation of CPM - a commit protocol for... 11
Activities at CO:
begin
if(re g il - a)
1£f1: ; k P S
axtract parricipant 1D from me ige ALORT
else
EXamlne <LOG T.,>> to get TC
send ABORT T, t 111 TC
else if(CO recelve all <<LOG T, >>,
MMIT T. and COMMIT ACK T,. from TC")
begin
force-write i [to stable toray
end MMIT T ¢ 3li TC
walt tor K freaem
if receive al MMIT ACK T,. from TC))
mplete the transaction T. and
send COMMIT ACK T, to TC'
end

Figure 6: CPM algorithm at coordinator €0

3.2. Cost analvsis of CPM

The CPM is designed with the cost mmimization in mind, as shown in Table 1.

Table 1;: Cost comparison of commit protocols

Protocol T ‘Mér of mcrssagos Log force- Communication
writes delay

2PC 4(n-1) 1+2n 4

PrC | ~3n-1) 1+2n 4

EP | . n-1 B 2+n 2

(TL___ I n-l 1+(n + n__n_e_)¥# N 2_

YV I 2(n-1)] ! 2
CcPM _'1_ 2tn-1) 1 I+n | 2

where n_op 1s number of transaction fragments.

Although CPM allows flexible offline processing and disconnection during
committing, but when too many transactions waiting to in the coordinator queue,
the coordinator is forced to cutoff some transactions to avoid process overflow. The
cutoff mechanism can be as simple as round-robin to remove the oldest item in the
queue, but this is open to later implementations

4, Simulation modeling

In addition to qualitative analysis presented in previous sections, we have
quantitatively investigated the performance of CPM in different scenarios and in

12 Le Huu Lap, Nguyven Khac Lich, Tran The Truyen

comparison with the 2PC. We developed a Discrete Event Simulator (DES) that
runs the model of the generie wired-cum-wireless network topology (see Figure 1).
The main idea behind the DES approach to simulation is based on concept of event,
an occurrence 1N the system at discrete time. Events are often created in advance
ahcad of current time and scheduled and activated at predefined time-stamp

associated with them.

The main flow unit 1n the syvstem model 1s message (data & signaling), that is
appropriate for current model of mobile communications. The commit protocols are
operating on the application laver where the underlying network provides the
transparent communication channels. Although our simulator supports arbitrary
network topology., but for the purposes of this paper, the fixed network is
implemented as a generic node with primary functionality of routing. For simplicity
we do not implement any mechanism for checking for error and message ordering at
Transport laver as usual 1n communication network, the loss of message and
disconnection and reconnection in wireless hnk are modeled as sufficiently long
delay. This 1s because 1t 1s usual for transport laver to assume message loss based
on timeout when network congestions occur. Similarly, handoff is also modeled as
long delay with the average delay time for handoft i1s 1s. Taking into account the
fact that average velocity of mobile users 1s 3m/s, average cell diameter 1s around
300m. so the handoff rate 1s about one every 100s.

Each site consists of an apphcation APP, a transaction controller TC and a
database (or participant). Transactions are always initiated at MU and the new one
1s created 4s after the completion or abort of the previous. Each portion T, of
transaction T, 1s assigned 40 a participant in the network randomly, except for the
oniginating site (MU). Because there are multiple transactions being concurrently
requested at CO and participating sites, each site needs to maintain a transaction
queue. For simplicity, the queue is implemented on First Come First Serve (FCFS)
basis. To avoid possible processing overload. the transaction queue at CO operates
tn round-robin strategy, where the oldest awaiting transactien will be aborted when
the queue 1s full

At cach site, CPU execution and 110 disk access are implemented 1in mutual
exclusive fashion taking a certain amount of time depending on nature of
aperations. Other requests have to wait until the completion of the previous.
Currently no parallel processing 1s modeled, but 1t can be simulated by adjusting
the average processing time.

We use the mean delay of 10ms (V. Kumar, 2002) when sending message in
wireless environment, and in wired network. the average transmission time is 5ms.

Parameters used in simulation models are shown in Table 2:

I

«aluation of CPM — a commit protocol for... 43

Table 2: Parameters setting 1in simulation

Il * —_

Log Foree-write 200ms j

! S i

CTransaction Segment B xecution | _HE l
Time to set one lock | 1ms |
Time to unlock Ims |
Data obyect update time . 6ms |
Transaction Degree of distribution 5l 7-10 fragments i
Message handhng time A Ims))
Average wireless transmussion delay 10ms |
Average wired transmission delav il oms |
Database svstem degree of distribution >= 10 sites |
Timeout 60s

i —_— —1

The simulation software 1s developed in standard C++ to promote portabihty.
Currently it supports 2PC and CPM with similar working conditions so that they

can be compared wath each other.
5. Experiments and Results

We have conducted a comprehensive experiment set to evaluate the
performance of two commit pratocols of interest: 2PC and CPM. The performance s
primarily mecasured using metric of transaction throughput per unit of time. Other
factors include portion of successful transaction, average number of messages per
transaction and transaction turnaround time (Figure 10). The transaction
turnaround time i1s defined as the duration between the start and the end of the
successful transaction at originating apphication (at MUs in this study). The results
presented in this paper are only those of the most interest.

For the system architecture setting, each transaction T, can optionally selects
a new (O, but for purposes of performance study under heavy loads, there is only
one COas set for the whole stimulation process. for both cases of 2PC and CPM. For
most studies, the network consists of 10 DBS but the simulator allows arbitrary

number of DRS.
5.1. Performance comparison under normal condition

This experiment investigates throughput of 2PC and CPM under load of
multiple parallel active MUs. The system runs under the disconnection probability
on wireless link of 0.5% - in normal situation. The queue size is 10 set for both 2PC
and CPM.

Under this condition, the CPM performs better than 2PC until it reaches
maximum (Figure 7). After that point. the system throughput of CPM decreases

14 Le Huu Lap, Nguven Khac Lich, Tran The Truyen

rapidly while the 2PC performance degrades rather gradually. Following the point
where number of active MUSs is roughly 35, the CPM works worse than 2PC does.
Figure 9 shows the average number of message of the two protocols. This reassures
previous theoretical analysis (Table 1). Figure 8 presents the same study as in
Figure 7. but under weak wireless environment (disconnection rate 4%). This will be
studied in the next sub section.

—ini 2P
—&— 2PC - dis &
300
05% s —J—CPM
= 250 —a—CPM o
%200
3 150 -
£
= 100 »
50
0
0 10 20 30 40 50 s . ; w ® "

Number of active MUs

Figure 7: Performance of 2PC and CPM

. " } Figure 8: Performance of 2PC and CPM
under load with normal disconnection rate £

under load with high disconnection rate

0.5%
(0) (4 0/0)
60 3500 Average transaction turnaround time
50 = ane 2000 ——2PC
——CPM
< — —8—CPM
g 4
]
g 20 2000
= ' 1500
2 20 S8-8-g
= 1000
10
500
0
0
0 20 &0 0 0 10 20Number BOparatel 808 e MUEO Lh] 70

Number of active paralle! active MUs

Figure 9: Average number of messages per Figure 10: Average transaction turnaround
transaction time

5.2. Effect of handoffs and wireless link failures

The common property between handoffs and wireless hink failures are long
delay (ranging from seconds to hours) compared to normal transmission time (1-
10ms). However, the average handoff time using in this study 1s around 1s, which 1s
much less than typical timeout value (minutes to hours). We run the simulation of
various average handoff rates ranging from no handoffs to 2 handoffs/minute, or
with the speed of 10m/s (or 36km/h) across the cell diameter of 300m. The results
confirm our intuition as there i1s no significant degrade in overall system
throughput as handoff rate grows.

Fraluation of CPM - a commit protocol for... 45

‘ . 2PC under various disconnection
&0 o N obabilit T b
‘ w . 160 pr Y —8—2PC B A%
' L e S
}‘“ L \‘\\ 140 ; —— P A 1IN
2, e 120
o SN . -
{ g o TS CPM éOO
E e 280
s - : 5
‘ P . £60
) 40
20
5 1 “,\i o
L B ____DlionnacmT ':.m'onc_v,,‘imk,,,,__ _J 0 20 Numbetdf Mus 60 RO
Figure 11 Effect of disconnection Figure 12: Performance of 2PC with
"l'(.nql“un(-\ on ()\'('I'il” [hl‘”uuh!)“l (h;]n(i()l-f- (llfft‘l‘t'l]t ll‘:lnh‘ﬂ('tl()n (hSC“nnUCt]()n rates
rate 1s 0.01) (0.5%, 4%, 12%)

CPM under vanous disconnection probabiity

—e— CPM - dis 0 5%
—rA— CPM - dis 4%

o & &
3 3 8

Qualpul,
8

—
o
= I =

Thr

w
o o

0 10 20 30 40 50 60
Number of MUs

Fipgure 13: Performance of CPM with different transaction disconnection rates (0.5%, 4%a)

The next experiment (Figure 11) 1s to investigate how frequent disconnection
changes overall system throughput. The disconnection frequency is the probabihty
that a transaction can be disconnected during its lifetime. Although the probabihity
being studied is rather artificial (up to 12%), the simulation demonstrates that both
2PC and CPM performance drops rapidly as the probability of wireless hnk failure
increases. This s due to timeout occurrences, during the commit process in 2PC and
during the transaction execution in CPM. In case of 2PC, the decision to abort due
to timeout 1in PREPARE phase 1s made entirely by CO. This abort message may
take sigmficant amount of time to reach TC* to schedule the transaction restart. In
CPM., for most of the time. the timeout occurs at TC*, and the transaction restart 1s
immediately scheduled. Together with the fact that the number of messages for
each successful transaction in 2PC is lager than that in CPM, one can expect that

CPM performs consistently better on overall.

The performance of CPM under load with different transaction disconnection
probability (Figure 13) tends to have the same characteristies as that of 2PC

16 lLe Huu Lap, Nguven Khac Lich, Tran The Truyen

(Figure 12). That 1s the weak communication medium makes the time to reach
maximum throughput longer and also decreases the maximum value,

5.3. System performance in relation with queue size at CO

It is intuitive that the queue size at CO influences the overall system
performance because of the round-robin operation. A set of experiments has been
conducted to confirm this conclusion (Figure 14). The overall throughput does not
change with queue size when the number of parallel active MUs 1s small. However,
it appears to determine when the system degrades under heavy load. The larger
queue size, the better it can handle multiple awaiting transactions, which is clearly
roughly proportional to number of active MUs operational in the network.
Similarly. the average transaction turnaround time 1s directly related to queue size
in closed queue theory (Figure 15).

CPU Performance with vanous queue size Tumaround time
—&— Queue 10 8000
i —6— Queve 30 ~—&— Queuve 10
0 —— Queue 50 o —— Queue 30
- 005 —— Queuve 50
s 200 3000
B 2000
100
1000
50
’ "o 10 20 E%) 40 0| 6a
o 10 » 0 ot % & m Number of aclve NS
Numbed of MUs
Figure 15: Average transaction
Figure 14: Influence of queue size at CO on turnaround time with different queue
system throughput size (10,30,50)

5.4. Other experiments

A significant number of other experiments have been carried out include the
investigations of various strategies to start an restart a transaction, different
probabilistic distributions of random handoff and disconnection time, timeout value
analyses and CPU speeds. Those results all confirm main conclusions presented in

this paper, of which we summarize in next Section.

6. Conclusions and Further work

We have proposed a new commit protocol for maobile transaction models
(CPM). From theoretical analysis and quantitative study using simulation, we
found that CPM performs consistently better than the classical two.-phase commit
(2PC) protocol. The simulation approach has proved a great aid to the

Fraluation of CPM - a commit protocol for... 47

understanding of protocol behaviors and correctness under various configurations.

The main results from experiments presented 1in this paper are summarized below:

e Most of the time the CPM performs significantly better than the classical
2PC under mobile configurations. In addition, CPM allows offhine
processing and MU-enabled disconnection during the commat time.

o Handoff rate 1s not very eritical in system performance

e Disconnections during transaction degrade the performance rapidly.

e Turnaround time tends to be proportional to size of the queue at
coordinator. This iHustrates that the queuing model can he applicable to
this problem. It 15 inconclusive about this time in case of 2PC and CPM.

e The following extensions to this research are in consideration:

e Using Mobile Agent (MA) for transaction management in mobile
distributed database systems

e The software will be re-designed as a framework for simulate commit
protocols and to enable the proof of correctness using more powerful

techmques such as Colored Petri nets [7].

References

1.

6.

-1

A Bernstein, V. Hadzilacos, and N Goodman, Cencurrency control and recovery in
database systems, Addison-Wesley, 1987,

I’ K. Chrysanthis. Transaction processing in mobile computing environment, Proc. IEEE
Workshop Advances in Parallel and Distributed Systems, Oct. 1993, pp. 77-82,

M H Dunham. A. Helal. S. Balakrishnan, A mobile transaction model that captures
both the data and movement behaviour, ACM/Baltzer J. Special Topics in Mobile
Networks and Applications, 1997, 149-162.
J Gray, A companson of the byzantine agreement problem and the transaction commit
problem, LNCS448, Springer Verlag, 1987.

J. Gray. Notes on database operating systems, Lecture Notes in Computer Science,
Vol. 60 Springer Verlag, 1978,

R. Gupta, J. Haritsa, K. Ramamnitham, Revisiting commit processing in distributed
database systems, Proceedings of ACM SIGMOD International Conference on
Management of Data, May 13-15, 1997, Tucson, Arizona, USA.

I. M Kristensen. S. Chrnistensen, and K. Jensen, The practitioner guide to coloured
petri nets, Int. J. STTT (1998) 2:98.132.

V. Kumar. N. Prabhu. M. H Dunham. and A. Y. Seydim, TCOT - A Timeout-Based
mobile transaction commitment protocol, IEEE Transactions on Computers, Vol. 51, No.
10, October 2002,

' Mohan. B. Landsay and R Orbermarck, Transaction management 1n the distributed
database management svstem. ACM Transactions on Database Systems, 1986.

48 Le Huu Lap, Nguyen Khac Lich, Tran The Truyen

10. A Siberschatz, H F Korth and 8. Sudarshan, Database system concepts, 3 ed. Mc
Graw-Hill, 1997.

11. J. Stamos and F. Cnistian, A Low-Cost Atomic Commit Protocol, Proc. of 9th synmp. on
reliable sistributed systems, Oct 1990.

12. G.D Walborn. P K Chrysanthis, Transaction processing in PRO-MOTION, proceedings of
the 1999 ACM Svmposium on applied computing, SAC '99, San Antonmo, TX, USA, 1999,
pp. 389-398

TAP CHI KHOA HOC DHQGHN, KHTN & CN. T.XIX, N4, 2003

DANH GIA GIAO THUC HOP THUC CPM
CHO CAC HE CO 8O DU LIEU PHAN TAN DI PONG

Lée Hiu Lap
Hoc vién Cong nghé Buu chinh Vién thong
Nguyén Khac Lich, Tran Thé Truyén

Vién Khoa hoc Ky thudat Buu dién

Hé théng co s di hLéu phan tan di dong (MDBS - Mobile Distributed
Database Systems) gAn day thu hit cac nha nghién citu vdi nhiéu cac mé hinh giao
tac khac nhau da duge dé xuat. Cac giao thuc hgp thic (Commit Protocol) cé dién
nhu 2PC (Two-Phase Commit) cé kha nhiéu diém yéu trong méi truong nay do tinh
chat cha thong tin vo tuyén va su di dong cua ngudi dang. Bai bao nay dé xuat mot
giao thic hap thic mdi goi 1a CPM (Commit Protocol for Mobile) c6 thé hoat dong tot
trén cac méd hinh giao tac khac nhau, trong dé cho phép xit ly ngoai tuyén va ngat két
ndl tam thoi trong khi dang thuc hién mat giao dich di liéu qua mang di dong.

Giao thitc CPM c6 s6 lugng ban tin, sé 1an viét nhat ky viao bé nhd on dinh va
chi phi truyén théong it hon 2CP, thich hdp véi méi truéng truvén thong kém tin cay
nhu di déng. CPM cho phép déng chu dong cao hon ti phia di dong thay vi 1é thude
hoan toan vao bo diéu phéi trung tAm nhu véi 2PC va cac giao thue khac.

Ching téi xay dung mét phan mém mé phong mang di dong theo hudng su
kién ro1 rac (DES - Discrete Event Simulation) vdi giao thic hgp thie 2PC va CPM
hoat dong trén dd. Cac két qua mé6 phong dia ching to duge hiéu suat cua CPM cao
hon 2PC trong moi truong phan tan di dong.

