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Abstract. MNuodel checking for Duration Properties of real-time systemns has been a
great deal of attention for recent years. In some works, duration properties as Linear
Duration Invariants, Linear Duration Properties, Temporal Duration Properties have been
chiecked tor systems, which are expressed by timed automata or restricted classes of timed
automata. Up to now, one of such properties, Temporal Duration Properties have not
dealed direetly for parallel real-time systems. In this paper, we propose an algorithm for
checking TDP for such systems. 1.e. for svstems which are expressed by networks of timed
automata. The algorithm is based on depth-first searching on the region graph of networks
and reduces checking problem to solving a set of linear programming problems. So, the

complexity of the algorithm is acceptable.

1. Introduction

Model checking for real-time systems, i.e. given a real-time system and a real-time
property and check whether the system satisfies the property. Instant properties have been
studied extensively and some verifying tools have been implemented for checking them.
In the recent few years, duration properties, i.e. properties which concern to intervals of
time, were considered more and more. Those are certain predicates on accumulated time
during of locations of systems and often are represented formally by formulas of Duration
Caleulus [2]. Checking duration properties is difficult because the duration of locations
are defined on the history of the systems, especially for the concurrent and distributed
real-titne systemns. .

A solntion in general case is given in [3] using mixed integer and linear programming
technigues that as known complexity of this problem is in class NP. To get effective al-
gorithms, many authors have dealed about more restricted systems and/or properties, for
example, Linear Duration Invariant property (LDI) was checked for real-time automata

nsing linear programming techniques (polynomial time) in [4]. The technique have been
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generalized to check LDI for extended subclass of timed automata [5] and for parallel com-
positions of real-time antomata [6]. However, for general cases (timed automata, networks
of timed automata) LDI have not checked by algorithms with accepted complexity.

Recently, discretisable formulas is more considered. Those are formulas which their
satisfiable for real time behaviors of the system is the same for integer time behaviors. For
such properties. algorithins based on exploring region graph will have accepted complexity,
because they only search on integral region graph. In [8] authors considered to a subclass of
duration formulas named temporal duration properties (TDP), and showed that they are
discretisable. Combining depth-first search method with linear programming technique,
authors proposed an algorithm to check TDP for timed automata.

In this paper. we show that the technigues introduced in (8] can be applied to
solve the problem for timed automaton networks and propose an algorithm for checking
satisfiable of TDP. Although a parallel composition of timed antomata can be viewed as
a restricted production timed automaton. but from discretisable of general property for
titned antomata, it is not obviously to deduce that the property is also discretisable for
networks. This is appeared by two reasons : by syuchronization of component automata
and by durations of time are calculated on local locations but not on global locations of
systems. For example, Linear Duration Invariant can be checked by linear programming
for real-time automata [4], but it have to use mixed integer programming in the case of
system is extended to networks of real-time automata [6]. So an effective algorithm for
checking TDP for networks of timed automata is necessary.

The paper is organized as follows. In the next section we recall some notations of
timed automata, parallel composition of them and integral region graph. Defining and
proving TDP be discretisable is given in section 3. In section 4 we present algorithm using
linear programming technique to check TDP for timed antomaton network. And, finally
in section 5, we give a short discussion about some directions to reduce the complexity of

algorithm

2. Parallel composition of timed automata

2.1. Timed automata [1]

A timed automaton is a finite state machine combined with a set of clock variables
X. We use ¢(X) to denote the set of time constrains which are conjunctions of the

formulas of the forin: ¥ < a or r > a, where r € X and a is a natural constant.

Definition 1. A timed automaton is a tuple A = (5,50, X, X, P(X), E), where
- S is a finite set of locations,
- sp € S is an initial location,

¥ is a fintte set of labels.
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N ois a linite set of clocks,
PN ) a5 a hintte set of nme constrams of clock variables,
ECSxdiX) =Y >2% » Sisafinite set of transitions
An e scvcoaer, 8T € B (soecalled an a-labelled edge) represents a transition

from location s ta location " with label a: s and s are called source and target location
ol ¢. and denoted by sourceie) and target(e) respectively. ¢, is a clock constraint that is
satisfited when the transition ¢ is enabled and r, is the set of clock variables to be reset to ()
by ¢ when it takes place. For siimplicity, in this paper we only consider deterministic timed
automata, veo antomata which have not more than one a-labelled edge for any ¢ € ¥ A,

and Ao i figure 1 are an example of two timed automata.

2.2. Parallel composition of tiined automata

In general, a system is often a set of timed automata running in parallel and com-
municating with each other. These timed automata can be synchronously composed into
a global timed automata as tollows : transitions of timed automata that do not execute a

share event (label) are interleaved and transitions using a share event are synchronized.

Definition 2. Given a set of timed antomaton A, = (S, 50,, £, X,.®,(X,), E,) (i = 1.n).
It does not loss generality, assumed that X,NX; =0,V # 5. A system can be expressed as
an parallel composition of A, s, i.e. an global timed automaton A = (8, sy, %, X, ¥(X), F),
where
-85 =85 x85x%x...x5,.
- S = (Su1, 5024 - - - S0n )-
-¥=X,uk,u.. . UL,
- X=X,UXN2U...UX,,
- QX)) =D (N)Uud (XU ud,(X,),
With n = 2. let (s,,4,,a,,r,,s))(1 = 1,2) are transitions of E,, F5.
o If oy = ag then ({sy,8). yn U, a, 1 Ury, (8], 85)) € E. where a = ap = as,
o Ifa; ¢ ¥yNYE; then ((s;,8), ¢, a;.r.(51,%2)) € E,
o fa; ¢ ¥,NYE; then ((sy.82), v, 02,72, (81,5)) € E,
Similarly, we can easily extend definition of E for n > 2. For example, the automa-

ton 1 in figure 1 s a part of parallel composition of A4, and Az which is reachable from
mitial location ug = (hg, ko) of system.
g : ~ b b s
Ay (ho)—2—u)) (hy) A2: (ko) ki
15 (ho) = =3 \% 2: (ko gl g

k
\fz?ﬁ;zzz 4:@

N é e o) b C
A g/u., 3 { uj */u-_x\ :@
SWAEZ LYy =0 PREEZET= J-‘-S'l

Figure 1. Paraiiel compositional antomaton of A} and Ag
wg = (hoko) oy = thy, kg)oug = (hg.k,), uy = (ha, k)
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2.3. Behaviors af timed automaton networks

Let A be parallel composition of timed automata A4,. Let 3 be a location of A, i.e.
5 be a vector (s1,82,-..,8,), where s; (2 = 1..n) is the location of timed automaton A,
that is called local location, 5 is called global location or location for short. Formally, if s
is a local location which occurs in 3 then we denote s € 5. If e is a transition of network,
which transits from location 3 to s*, then we also use denotations source(c), target(e) to
denote 5 and §', respectively. A clock valuation v is function v : x — K. That is, v assigns
to each clock £ € X the value v(r) € R. We denote vg as an initial clock valuation, i.e.
vo(r) = 0,vr € X. Ford € R, v + d (time elapse by d) is the valuation v’ such that
Vr € X. v'(z) = v(x) +d. For r C X, v[r = 0] (reset r to zero) is the valuation v’ such
that Vo € r. v'(z) = 0 and Vx ¢ r. v'(x) = v(r). A clock valuation v is called integral
clock valuation iff v(x) € N, Vr € X.

A state of A is a pair (3, v), where T is a location of A and v is a clock valuation. A
state (3, v) expresses system is staying at the location ¥ and all elock values agrees with v
at that time point. As number of valuations v is infinite, the number of states of system
is infinite, too.

Given two states (3,v), (s',v') of A, and a non-negative real d. Then, we define

ff,(.

s, v") denoted by (3,v) =5 (57, ¢') as follows.

state transition from (5,v) to (s

Definition 3.(3,v) o (7, ¢') iff : e = (3,%.,a,7.,5) € F, such that
- v + d satisfies ¥,
- v = (v +d)[r.— 0]

The state transition means system staying at location 3 in time interval o from time
point ¢ (with clock valuation v) to t' =t + d (with clock valuation v + d). At time point
t', some components of system take transition e with event @, when v + d satishes any
constraints on a-labelled edge of these components. The system transits to s, Then v + d
is changed to v’ by some clock variables are reset to 0.

In order to represent behavior of A, we use sequence of time-stamped transitions. A
time-stamped transition is a pair (e,t), where ¢ is a transition of A and t is a non-negative

real number that expresses time point transition ¢ be take place.

Definition 4. A time-stamped transition sequence a (ea.to)(er, t)(ea, ta)...(Cnitm)
(m > 1) is a behavior of A iff:
- target(e,) = source(e,, 1), Vi = 1.m—1 (with the convention target{ey) = source(e,)
- S0
-0 =1ty <t <tz <...<ty. such that (v,_; +¢t, — t,_;) satisfies all constraints in

Ver. where v, = (v, + 1, — t,_1)[re; = 0], Vi = 1.m.
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If (coto)leyrdyilesty) o bon ) 18 @ behavior of A, we call 5, target(e,,) o

reachable location and (5,,,. 0, ) a4 reachable state of A,

A behavior 0 (e tgitey ez ta) o (em, thin) 18 called integral behavior iff ¢, €
N.YVi = 1.m
Erample I Lot us consider behavior @ oy = (e, 0), (a0, 4.5),(b,5.7) of network

given 1 figure 1o I expresses the system staying at nitial location (hg, kg) ap to time
point 1.5 with clock valnation vy« 4.5 = (4.5,4.5,4.5). The clock valuation satisfies time
constramt .+ > 1. so the system exeentes the event a and transits to location (b, kg). After
transition of system, the clock i is reset to O and clock valuation becomes vy = (41.5,0, 4.5).
At next fime point 5.7, clock valnation vy + 1.2 = (5.7,1.2,5.7) satisfying time constraint
y < 2 Az <5, the system exeeutes the event b and transits to location (ha, k) and vy + 1.2
becomes 23 = (5.7, 1.2,0). Sunilarlv, 05 = (eg,0), (a,5), (b, 6) is an integral behavior of the

network (For short, in the example we identified the name of transitions to their labels).

2.4. Region graph

Checking a property for timed automata. that is in principle solving problem based
on the corresponding valuation graph, which is in general infinite. However, instead of
using the valnation graph, it is sufficient to use the region graph, which is presented in
this section.

Now. we sunnnarily present about technique partitioning the space of clock valu-
ations which have been proposed by Alur and Dill {1] and well-known. Main idea of the
technique is grouping, clock valuations into regions such that all valuations in a region will
satisfv the same set of clock constraints. Hence, states of system are also grouped into
cquivalence classes which is named a region. These regions will be nodes of region graph
and the munber of nodes is finite. In the case values of clock is natural numbers, the
uumber of region is much smaller than the case of real time.

In this paper. we consider only integral clock valuation, so we represent only integral

region graph. Besides, some known properties will be not proved. For detail, the reader
can refer in [1].
Definition 5. Let vy, vy be two integer clock valuations, let K, be the largest integer
appearing in a clock constraints ¢ < r or < a of clock . Relation 2 is defined as
follows = o) 2 oy itf Y € X ¢ either vy () = v2(x) or min(ey(z), v2(x)) > K,. It is casily
to prove that ™ is an equivalence relation. An equivalence class of v is denoted by [v]
and called a integral clock region. Let II be the set of all integral clock regions, we have
M < [Tex (Kr +2)

We have some following properties.

Property 1. v ™ ¢’ implies ¢ satishes clock constraint o iff v satisfies, too.
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Property 2. Every clock region 7 € I1 can be characterized by a set of simple clock
constraint C(n) of the form x =corx > K;. Thatis C(n) =U,. v {t = ¢ar, 0> K }.
Property 3. Let v, v' be integral valuations. If v 2 o' then
- v+d>v +dVd € N. So. we can define clock region 7 + d as [v + d]| with any
v € m. Besides, for every r € X, ifx = ¢ € C(n) then if ¢ + d < K, then
r=c+dée('(r +d), otherwise = > K, € C(m + d). Note that mp = 7 + d for
any d € N.
- wv[r w0 2 V'[r = 0]. So we can define w|r — 0] as [v[r — 0| with any v € =
For every r € X, if r € r then £ = 0 € C(xjr = 0]), and if r ¢ 7 then when
r =c € C(m) we have = = ¢ € C(w[r — 0}), and when z > K, € C(r) we have
> K, € C(r|r—0)]).
We extend the region equivalence 2 to the states of network A as follows.

Definition 6. Two states u; = (5,v;) and up = (3,v3) are region-equivalence iff vy, =
v2. Hence, the set of states of networks is partitioned by classes of states, each class
is characterized by a couple of a location 3 and a clock region m. We call < 3,7 > bhe
a configuration of network. These configurations will be nodes of region graph that is
defined below.

Ezample 2. With timed automaton A (which expresses parallel composition of A,
and Ay) in figure 1, we have the set of clock X = {z,y, 2} and K, K, K, is corresponding
to 1, 2, 5. Two following clock valuations are equivalence : vy = (2,1,4),v2 = (3,1,4).
They are in a region = with characterized set of constrains C(n) = {& > K,,y = 1,z = 1}.
There are infinite elements in 7. Each element (a clock valuation) in 7 is a tuple (x, 1, 4),
where £ > K, = 1. Hence, states (ug,v)) and (ug, v2) arc equivalence and characterized

by configuration < uy, 7 >.

-

Definition 7. (Region Graph). Given network of timed automata A = (5,50, X, X, ®(X ), E
the integral region graph IRG(A) is the transition system (Q.qo, X, =), where
- the set of states = § x I1,
- the initial state go = (so, [v0]),
- the set of labels ¥,
- the set of transitions =€ Q x £ x Q is defined as a = ((3,7),q, (8, 7') € — iff there
exists ¢ = (8,1, a,r., ') such that 7 + d satisfies ¥, and 7’ = (7 + d}[r. > 0] for

some natural number d

3. Duration temporal properties

3.1. Definition
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\ temporal duaration property is a constraint for location durations lor o short trace

of a cettamn pattern 1s detined tormallv i Duration Calentus 2] as follows

Definition 8 A temporal duration property over A4 is a Duration Calealus formula ol

the form

¢4

F ;"V[‘:'l ..,_, 7 r[-_ﬁh.n = Z"nj[-"' M

sE§)

where 5, s are locations and O s a finite set of local locations of svstems (1e. Q)

Sy Sy S,bcand ets = QM are reals. For siimplicity, let us denote
I‘)- | '_;E 11 .";;_. a0 r[;f.‘.‘. = Z'.Q/"‘-f '\I'
s€9)
HDIE([R, 5, (1511

Henee, temporal duration property over £ 1s denoted as OD. The above form of formula
ix expressed in sviatax of Duration Caleulus.  In the semantics, intuitively. a temporal
duration property L1172 savs that for any time interval, in which if the system runs through
the sequence of global locations 5, (5., ... S, - then duration [ s of the local locations
< over that interval satisties the constraint 3 oo [ < M ([ s when applied 1o an
mterval of time, is the aconmulated tine that the location s is present in the interval, and
is called the duration of s over that interval). Temporal duration properties form a class
of Duranon Caleulus formulas that are often encountered in the developiment of real-time
svstems using Duration Caleulus, For exaple, design decisions for the siimple gas burner
m 2

For any timed transition sequence a = (e, t)(c2,t2) . (et ), for o > 1,1 >0
such that u + 1 <, let us denote by o(u, 1) the subsequence (e, 00 0oy ) - (Cuviduyn)-
That means a(u. ) is a subsequence of o from index « + 1 with | timed-stamp transitions.
Definition 9. For a timed transition sequence a = (e t){ea.43) ... (€m. ta). for any
w > O such that u + k& < m, we say a(u, k) matches 4(D) (or 4(D) matches o) iff
saurce(e,,y,) =8, for any g such that 1 < j <&,

So. the fact “o(u, k) matches 5 (D) means that the temporal order of the location
ocenrrences i a(u, k) s defined by (D).

For a subseqguence a{u, k) that matches 4(D). the duration of the local location s

over o, k) is defined
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hence, the value Y e, [ s of over a(u, k) is defined by

O(o(u,k)) = Z Z Callbds = %)

5 & 8i,

k

.
[

Definition 10.
1. A behavior o satisfies the temporal duration property 00D, denoted by o | 0D, iff
for any subsequence o(u, k) for o that matches y( D), the condition #(o(u, k)) < M
holds.
2. A time automaton network A satisfies the temporal duration properties (0D, denotes
by A = 0OD, iff for aﬁy behavior o of A, ¢ = 00D holds.

3.2. Discretising TDP

Definition 11. Let A be a timed automaton network, and let P be a predicate over the
behaviors of A. P is said to be discretisahle (w.r.t. A) if P is satisfied by all the behaviors
of A iff P is satisfied by all the integral behaviors of A.

Therefore, if P is discretisable (w.r.t. A), verifying that P is satisfied by all the
behaviors of A is reduced to verifying that P is satisfied by all the integral behaviors of A

ouly.
Theorem 1. TDP is discretisable with respect to timed automaton networks.

Proof. For any t € Rt let int(t) and frac{t) respectively be integral part and fractional
part of ¢, i.e. t = int(t) + frac(t) and frac(t) = 0 iff t is an integer number. Let
a = (e1,t;)(e2,t2)...(€m,tm) be a real behavior.

Let F, = {frae(t,) | 1 <1 < m}UuU{0,1} and card(F,) be the number of the
elements of F,. So, o is an integer behavior iff card(F,) = 2 (F, = {0,1}). Let
fo. fioo oy fqi fa+1 be the sorted sequence in the ascending order of all elements of F,,
Lot Fy = {foufire s far fasa} where fo =0, fgr1 = 1, fi < finr(0 < 1 < g). Because o
is the real behavior so card(F,) > 2 (i.e. ¢ > 0). Let I, = {i|frac(t;) = f1 (1 € 1..m)}.

We construct behaviors o' = (e, t})(ez,15)...{em, t,,) and 6" = (e, ] )(e2,t5)...(eyn, 1
as follows.

=t =tifig I,

-th=t;— fHrand t! =t, - i+ fo (famaybe 1) if1€ I,
Lemma 1. o' and ¢” are behaviors of A.
Proof. At first, we prove that if t; — ¢, &< a then so are t] — t; &< a and t] — t]' o« a, where
j>1,a€ N, and x€ {<,>}. We prove only for the case & being <. For the case >, the

proof is similar.

- Wheni,jel,ori,j¢ I,. wehavet) —t, =t -t/ =t, -, <a
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When o € [, and j @ L, we bave frae(t)) > frac(t,), hence t) — 1] = t, - (t, - f,)

(t,=t,)+ f1 = ant{t,—t,)+ frac(ty) — frac(t,) + fi = int(t,—1,)+ frac(t,) <a-1+

Srac(t,) <o Wehave t! =t =t,—(t, - fi + f2) = (4, —t.)—(jz-f.) <t -t <
- Wheni g I, and j€ L, wehave ) =t =(t, - fi)—t,=t,-t, - fH <t,~1, <a

Counsider that frac(t,) = fi < free(t,), frac(t]) = fo < frae(t,) and ent(t?)

int(t)). So if t, —t, < a then !:’ ~ gl = t;’ ~ 1, < a, too.

Value of any clock r at time point ¢, is t; — ¢, where ¢, is last time point that clock

- (1.

vartable r to be reset. Therefore, if r satisfies time constraints a < r and/or r > b, at time
points ) aud 17, r satisfies these constraints, too. Hence, o' and a” are also behaviors of

A

Lemma 2. Let a(u, k) be a subsequence of o that matches v(D). If 6{o(u, k)) > M then
cither #{o'(u, k)) > M or 8(a"(u.k)) > M.

Proof. It is easily to see that subsequences o'(u, k) of o’ and o”(u, k) of o’ match v(D),

too. By the definition of the function #. we have

] =

9(”(“‘9 A)) = cs(tu+1 - tu+}-l)
1=1 s(—-?“’
k
B0 (k) = 3 Y ealty, = tur, 1)
1=1 .sé'.i,).
k.
()((7”(“,“.)) = L L \l(fu+) 1:-+]- l)
1=1 s8€5,

~

hence, we casily calculate:

0(c'(u,k)) = 8(a(u, k) + fLA
0(a"(u, k)) = 8(a(u, k) + (fr - f2)A

where A = Z)s Is Z’E“; Cs = Z;Hel, ZaEE.)'

Since fy > 0 and f, — fo < 0. we have either 8(o’(u, k)) > 0(a(u, k)) or 8(a” (u, k)) >
fo(u,k)). so lemma was proved. From lemma 1 and lemma 2 we can construct consecu-
tively behaviors o* by choosing o’ or " compatible. After each time, card(F,) decreasing
by 1. and finally (after q times) card(F,-) = 2, we reach a integral behavior o* satisfying
O(o*(u,k)) > B(o*(u,k)). Hence, if there exists a real behaviors o which fails 0D (i.e.
Alo(u, k)) > M then we can get an integral behavior ¢* fails OD, too. Therefore, if OD
is satisfied by all integral behaviors of A, then it is satisfied by all (real) behaviors of A.
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4. Algorithm

By theorem 1, checking A for TDP can reduce to checking whether all integer
behaviors of M satisfy OD.
Denote the set of all integer transition sequences 7 = €,,e,, ... ¢,, such that source(e, )
-5, for y = 1.k (i.e. the sequence matches 4(D)) by I, Constructing the set T' is easily,
so we do not present here. For each such integer transition sequence v € I') if 4 appears
in an integer behavior ¢ then o will be of the formm as in figure 2. Along integer hehav-
ior o, system reaches to state 5, at time point ¢, € N corresponding to integer clock
valuation v, and starting from (5,,, v, ) system continuously runs along 4 and takes transi-
tions €,,,¢,,,...,¢,, at time points ty, 11, tma2, ..., tmak corresponding to clock valuation
Uy Uik 1s - - -+ Um+k-  These clock valuation satisfy constraints ¥, 4, ,,..., 0. . where
Um+y = (Umayo1 + ) = 0,2, = tmey = tmay—1(1 £ 3 < k). Verifying vm,,-1 + &,
satisfies ¢, corresponds to a linear coustraint C'; on r; from the definition of v, 4,
and ¢, as in algorithm 1,
Therefore, all subsequences v of a behavior o and starts from the integral reachable
location (3,,,v) satisfy the inequality Zle ng. Cs(tms; = tmy;—1) < M if and only if
the optimal value for the following linear integer p;'oblem (with k integer variables) is not

greater than M.

k
supE E Cs,

1=1 se‘i.)
subject to the constraints

Cl,CQ,...,Ck,I] >U,Iz >0,...,.L'k,>()

(by our convention, the optimal value is —oo when the constraint set is unfeasible). As
above discussion, we see that this problem depends only on the integral clock interpretation
v of reachable location (5,,,v) and the sequence . That is integer linear programming
problem which is in NP. However, by theorem |, we can take t,,,,"s(1 < 3 < k) as real
numbers, (thus r,"s be real variables) to convert it to a linear programming P(v,vy). The
results of the two problems are the same.

In a word, to check A |= OD. with each couple (v, v), where » is integer valuation
of integral reachable locations (5,,, v) and 4 € T, we have to construct and solve the linear
programming problem P(v, ) of & variables and verifying if the result is not greater than
M.

The number of integral reachable states is infinite, so the number of linear pro-

gramming is also infinite. However, from the definition of equivalence relation on clock
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valuwations, we can castly prove following lemma which asserts that for cach valuation re
piot 7 and sequence 50 we Lave to solve ot most one linear programming problem Ple, 5 ).

where s any valuation of

< S - - €y, |
Sy — —] IR et Np e — N, r 5
Fins 1 bonsk |
i
Figure 2. General behavior containing 5,5, ... 3. § = target{e,, )

Lemma 3.. Let (5, .00 (5, . ¢") be nteger reachable states of A and v ™ v o(re. vl

fo 7). Then. for any 4 € I problemns Ple,v) and P(v',v) give the same result.

From the lemmma. we can combine a region of clock valuation = with a transition sc-
guence g € ' to generate alinear programming problem P(m, ) instead of set of problems
Ple.~) with Ve € . P(n,4) is generated by algorithin 1 below, In the algorithn, we call
Cons be the set of constraints of P, it s generated step by step along 5 by replacing each
clock variable ¢ in constraimts of ¥, by o, v+ e, ifr =c,, € Cla). > K, € C(m)
then constraints of the form ¢ > d in ¢, will be reduced and constraimts of the form
r<de, willmakeP infeasible. For example, assume that ¢, — {&>2,y >4 2 <K}
and 7 = {r =2,y >0,z =4} then Cons = {r, + 2> 2,z; +4 <8} and if y <4 € 4,
then I as infeasible. As usual. we denote afr/y] the formnla obtained trom a by replacing
all occurrences of x by y.

Algorithm 1 : Generating linear programming ()

Cons = {r; >0..... i > 0}: Infeasible := false:
For j:= 1 to & do Begin
For every clock r € X do Begin
Ifr>NK,¢ i, (i.e. r = cqr, € ¢,,) then
For every constraint a on rin g7, do Cons := Cous U n[r/a'J + Cr i)
Else If there exists a constraint o on £ in Ve, of the forin r < d then

Begin
Infeasible truc: break.
End:
If r € r., then 7= wles /0
End: I
End.

k

=1 .'_4.(\6-.:,'

If - Infeasible then P(z.+) := sup Y ¢, I, subject to Cons;

ldea of the main algorithm is as follows.
By depth-first technigues we sequentially generate reachable nodes (5, ) of inte-

pral region graph of 1. Combine m with each v and solve P, v). The process terminate
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when all of reachable nodes were generated (i.e. A = TDP) or there exists a problem
P(m.v) give negative answer (i.e A do not satisfy TDP).

Basic steps of algorithmn is given in algorithm 2. In the algorithm we use S denoting
a stack saving current path lead to 3,,, n to current node of region graph of network and
SN to the set of successive node of n which has been traversed.

To find successive node of n we can use the algorithm 3.

Algorithm 2 : Checking TDP algorithm

S := {(So.lve])}; SN := @
Repeat
pop(S,n);
If u = (3, r) have no new successive node then Begin
If 3 =73,, then check P(r,v),(Vy e I'):
End
Else Begin
push(n, S);
n := a new successive node of n:
If n ¢ SN then Begin
push(n, S); SN := SN U {n};
End:
End;
Until empty(S);

Algorithm 3 : Finding the set of successive of (3, )

Succ := 0: d :=0;
Repeat
=1 +d;
if 3¢ = (3. ¢, a,r,..7) € E such that ' satisfies 1,
then Succ := Suce + #'[r — 0];
d:=d + 1;
Until 7’ = =;

5. Conclusion

In this paper, we applied and extended techniques in (8] to give an algorithm for
deciding whether a timed autoinaton network satisfies a temporal duration property. Al-
though, timed automaton was checked for TDP [8], however, it have not dealed directly in
the case of network. So. we think that a such algorithm is necessary. Main our extension
in this paper is showing that TDP is also discretisable for network of timed automata and
re-arrangemnent linear programming problem producing from each fragment v of behavior

a and cach reachable region 7.
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In fact, complexity of our algorithm is still high. This depends on natural basis
of problemn. As behiaviors of svstem Lave to run along sequence of global locations, the
aleorithim hiave to search reachable nodes on region graph of production antomaton. That
15 itewn whineh decides the ligh complexity of the algorithm while linear programming, proby-
leny 15 in class of polvonomial complexity problems. However, there is still some technignes
which can be used to rednee the complexity of the algorithmn. For example, we can ap-
ply technignes proposing by Alnr and Dill [1] for minimizing region graph or techniques
“FIS - fintendex sets™ in T oto generate integral abstract graph which have size smaller
than region praph. We think that, techniques in [8] (basis of this report) is verv useful
tor chiecking some another duration properties. Especially, we hope combining technigues
discretising and linear programming for checking Linear Duration Invariant in future.
Acknowledgement The author woulel like to thank Dr. Dang Van Hung for his valuable

coments and enconragement when writing this paper.
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TAP CHI KHOA HQC DHQGHN, KHTN & CN, T.XIX, Np4, 2003

KIEM TRA HE THOI GIAN THUC HOAT DONG SONG SONG
pOI VOI CAC TINH CHAT KHOANG TUAN TU
BANG QUY HOACH TUYEN TINH
Pham Hong Thai
Khoa Cong nghé, DPHQOG Ha Noi

Bai toan ki€ém chimg mo6 hinh déi vdi cong thic khoang da dugce quan tam nhiéu hon

trong nhimg nam gdn diy. D3 c6 mot s6 cong trinh dé xudt thuat toin kiém chimg cho
cdc cong thic khoang nhu “Tinh chét khoang tuyén tinh™ (Linear Duration Properties), "Bat
bién khoang tuyén tinh” (Linear Duration Invariant), “Tinh chat khoang tuan ty™ (Temporal
Duration Properties - TDP) d6i vdi ldp cac hé thong biéu duge boi 6t6mat thai gian. Trong
do. "Tinh chat khoang tudn tu” cho dén nay van chua dugc ban chi tiét doi vai hé théng
cac hé thoi gian thuc hoat dong song song. Trong bai bdo nay, ching 161 d¢ nghi mét thuat
toan kiém chimg TDP cho cdc hé théng nhu vay, tiic déi vdi cdc € thong biéu dién dugc
bai ludi 6t6mat thot gian. Thuat todn duge dat trén co sd tim kiém theo d6 sau trén d6 thi
phan vung cua luéi 6t6mat va dua bai todn kiém chimg vé viéc giai mot tap hop cic bai

todn qui hoach tuyén tinh, do vay d6 phuc tap cta thudt toan la chap nhan dugec.



