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1. INTRODUCTION

The calibration method was studied systematically by Dao Trong Thi in [3, 4] and R. Harvey, -
B. Lawson in [7]. Various concrete calibrations were used by many authors to find minimal
faces, see Federer (5| Berger (1], Dao Trong Thi [3, 4], Harvey- Lawson (7|, Dadok- Harve-
srgan (2], Le Hong Van [9] Hoang Xuan Huan (8] etc... For applying this method, determining
» comase and the maximal directions of a p-covector is the main obstacle. In the field mentioned
pve, it is still open the question whether the equality [[¢ A 9" = |[@]|*.||¥||* holds where ¢ and
are forms on orthogonal subspaces of R™. Let p € A* R™, ¢ € A* R", then @ Ay € AF+t Rm+n,
¢ note that although the inequality [l A %||* 2 [[@]|*.[|[¥]* is obvious the equality [ A $||* =
|| *.||#]|* had been proved only for some concrete cases. Morgan [11] has showed that the equality
Fdsifk <2 orm-k<2 ork=10=3,orm—k=n-1=3. Recently, Hoang Xuan Huan (8]
s proved it for an arbitrary E-separable form . In this paper we prove the equality when p is
her a torus form, or a certain averaged form by a group.

2. THE COMASS OF A PRODUCT WITH A FACTOR BEING A TORUS FORM

First we recall some notions and facts of exterior algebra.

Let R™ be the n-dimensional Euclidean space, Ax R™ and A* R™ the dual spaces of the k-
tors and the k-covectors respectively. The inner product and the norm on R" induce the inner
duct and the norm on Ay R" and A* R*. Consider an orthonormal basis e;,...e, of R* and

dual basis e},..., ¢n of A' R" (from now on, the symbol e* means the dual covector of ¢),
n an arbitrary p-covector in R™ has an unique expression @ = 3 ay e}, where [ = (33, ..., 1),

1< 'tp<nande;=¢ A Ac;’. The comass of a p-covector  is defined by

llell* = sup{e(¢) : € € G(p, R")},

lere the Grassmannian G(p, R"} consists of all oriented p-planes in R" and it may be identified
th the collection of unit simple p-vectors in R"™.

For any p-covector @ in R™ the set of maximal directions of ¢ is defined by
G(p) = (€ G(p, R") : p(§) =]} -

Let ¢ be a p-covector in a subspace ¥V C R"™ then ¢ can be considered as a p-covector in R™
identifying with I1* ¢ where II is the orthogonal projection of R™ on V.

Because every p-covector in R™ can be considered as a parallel differential p-form in R", from
w on, we shall call every p-covector in R" to be a p-form in R™ unless otherwise stated.
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Now we recall the notion of torus form which was introduced and its comass was comi
in several papers, for example, see [2]. Here we consider it only in the relation with the pre
mentioned above.

Definition 1. Identify R?" = C™ with real orthonormal basis ¢,, Je,, ..., ¢4, Jen. Any n-fo

is called a torus form on R?" if it belongs to @ A'span (e, Jer) € A™ R?".
k=1

Note that the Lagrangian forms Ree'” dz; A --- A dz, are torus forms.

The torus forms belong to the class of V-torus forms defined below:

Definition 2. Let V be a 2-dimensional subspace of R* (n > 2). Any form ¢ € A'V & J
(¢ > 0) is called a V-torus form.

We note that if e;, ez is an orthonormal basis of V then each V-torus form can be expr

p=¢ey Ao +eyAhpa,
where o, and @5 are forms on V4,
Obviously, for any p-form 1 on R*, [|}|* = max |vd0||*. Moreover, for V-torus :

vER™, Ju|=1
we have the following

Lemma 1. Let () be a V-torus form on R"™. Then ||(1

"= max [vdn.
veV, |vj=1

Proof. The inequality e‘rpﬁ_lllu_] )|* <|N|* is evident.

Conversely, take §£ € G(1) and put £ in canonical form with respect to V (see |7, Le
7.5]), that is
§ = (cosbye, +sinb, f1)A(cosbyex +sinz o) Afan-- AJ,,

where ¢, €2 is and orthonormal basis of V', f,, fa,..., f,, are orthonormal vectors in V+ and a
i, 0<6; < %,fori=1,2 Then

1(€) = cosf) sinfy N(ey AfaA - Afy) +sinby cosbo Q(fiAeaA - Afy)
= a cosf) sinfly + bsind, cosb, < max{|al, [b|} (cosf; sinfy + sin b, cosfy)
= max{|a|, 8]} sin(d, + 82) < max{lal, [b]} < I},
wherea=0(e A faA - Af), b=0(fiAear- A L)
Hence the inequalities become equality, in particular, max{la|, [b|} = ||©2]*.
Therefore, |a| = ||02]|* or |8] = ||O2]|*.
But Jal = [R(es A S A+ A fp)] = lea I (2 A+ A £l € fles 10

and [b] = [ (fi Aea A=A fp)[= | -2 dR(fi A Af) < || - 210,
therefore ||Q2]|* < [le; A0Y|* or [|O* < || — e2 19]|".
Thus, we have ||2]|* = max |v1Q)*.

veV, Ju|=1

The lemma is proved.

Lemma 2. Let R**™ = R™ @ R™ be an orthogonal decomposition of R"*"™. Letp € A
¥ € AYR™, and v € R™*™ such thatv 1y =0. Thenv 1{pAy) = (v 1p) Ay,
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Suppose vy,...,vp 4, € R"*™ and v; = v. We have

v [p A Wi'][v'la iy 'Up+q] = [‘F‘ A ‘i’)(ull T2y e U_n—{»q)

> index{o) @(va(1), - Vi) Y(Vaps 1)y s Vatpaa)
mESh(p.)

Sh(p, ¢) consists of all permutations o of {1,..., p + ¢)} such that o increases on the set of
p} and the set of {p+1,..., p + g}

fince vy 1% = 0 the above sum equals to

Y. index{(0) p(v1, vz}, Vaip) YOatps 1 o Votpia))
aEShip-1.q)
= z index(a}(”l -I‘P"Uo{'.’h iy ”n[p}) '!"[Un[p+l.l1 ey Uﬂ1p+q])
weShip—1.49)

= (vy dp) Ad(v2, ey U5y ey Yipag)
® o is a permutation of {2, 3,..., p+ ¢} \

Consequently vy 1(p A ) = (v; Jp) A¢. The lemma is proved.

yrem 1. Let be © a torus form on R*™ = C™ and y be a p-form on R™. Consider 0 = p Ay
a (n+ p)-form on R*™ @ R™. Then [|Q" = [lo]".[¢]l" and G(Q) D G(p) A G(¥).

ark. The second conclusion holds for every case when the first one holds.

L3
. Let ey, Jey,..., en, Je, is an orthonormal basis of R*" and p € ® Al span(ex, Jex) C
k=1
' Then ¢ and pA ¢ are V-torus forms, where V = span(e;, Je,). We note that v _1p where
"is a torus form on R?("~1) = V1 Using Lemma 1, Lemma 2 by induction on n we have:

Il

B lod(eAw)* = e l(vde) A

_I - . e - - i
vemax lv el 9l = llel” vl

e Al

take n € G(g) and A € G(y), we have

QnAA) = p(n).9(A) = lleli* [wll* = 19

n A A € G(Q), this implies that G() D G(p) A G(¥).

lvery parallel differential form having comass one is a calibration (the notion of calibration
e given later in section 4). The following corollary follows directly from Theorem 1.

llary 1. Let Redz = Redz; A --- A dz,, be the special Lagrangian calibration on R?" = C™
7]) and @ be a calibration on R™. Then w = Redz A @ s a calibration on R?*™*™ and
D S(Lag) A G(v) where S(Lag) consists of all special Lagrangian subspaces of R?" = C.

Jecause for an arbitrary 3-form on RS there is a convenient basis so that this 3-form is a torus
(see [11] , from Theorem 5.1 in [11] and Theorem 1 we have the following
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Corollary 2. Let p be a calibration on R® and ¢ be a calibration on R™. Then
calibration on R®*™ and G(p A ¥) D G(p) A G(¥).

3. THE COMASS OF A PRODUCT WITH A FACTOR BEING AN AVERAGED F
Let G € O(n) be a compact Lie group, each k-form ¢ = f ¢"w dg for any w € A* R®

an averaged form by group §. Some known averaged forms are the normalized powers o
nionics Kahler forms, the Euler forms and their “adjusted powers”. Using them as cal

one showed certain submanifolds are homologically minimal in quaternionic Kahler manii
in Grassmannian manifold (see [6, 12].

In this section we prove that the equality on the comass of a product holds when o
is a certain averaged form.

Let G be a compact Lie group. Consider the Haar measure on § such that the measu
whole group § equals to 1. We have the following

Theorem 2. Let § C O(n) be a compact Lie subgroup and w € A* R", suppose that £ € (
spanf is G-invariant. Then

" /; det(gllpant}g.”dS'“. = |lw]||*

and £ 15 a mazimal direction of the form on the left side.

Proof. Note that since span{ is G-invariant and § C O(n), det(g|spane) = +1 or —1 we h
ji f; det(glspane) 9"w dg| < ]
Indeed, take n € G(k, R™), then
| [ det(oloune) "l do| < [ fatamldo < [ ol dg = ol
§ g §
for any n € G(k, R™), therefore
| [ aetobmane) oo < ol

Conversely, we have g, £ = det(g|apane) €.
Therefore

||f§det(gl=pmc)9‘w der' 2 /gdet[gtamc)g‘w(f] d9=fgdet“(9|apau¢)w(€] dg.
Since £ € G(w) and det(g|spane) = 1 or —1 we have
| [ cettoonse) o] 2 [ i do = i

Hence,

” fg det(glspane) ¢'w dgn' = |lw|*
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is a maximal direction of the form on the left side. The theorem is proved.

em 8. Letp € A*R", § € A'R™, o A € A5 R such that o A]* = lo]|* 911"
C O(n) be a compact Lie subgroup such that ff x(9) g*edgll* = lloll*, where x(g) 15 @
n of value 1 or -1 on G. Then

N(fgxlg} g pdg) Ay = !Ifgx( 9)¢" pdgl .|

It is sufficient to prove the inequality
||(f§x(9) g pdg) A" < Fl[gx(g)a'wdgi.i'-!h}fl'-
ve

H(/;x(g) g pdg) Ayl = Hfg(x(g] g oA y)dg|” = ||fgx(9) g (e A¥)dgl|”, (#)

here § is considered as a subgroup of O(n + m) such that g|gm =1 dgm, for any g € §.

rom (*) it follows that

IS,

/Humgwh¢mdg
=anAmrw=NwAmr. (+4)
o ABI* = lloll*- ¥l from (se) we have

||([§ x(g9) 9" dg) < [l

‘= fg x(9) " dgl| "¢ ]" .

1eorem is proved.

‘ow we apply the above results for the powers of quaternionic Kahler forms, the Euler forms
teir “adjusted powers”.

me showed that submanifolds Gi R**? is homologically minimal in Grassmannian manifold
*" for k-even and they are calibrated by forms A, given below (see [6]).

et us consider an orthogonal complex structure J on R* then J defines a complex structure
same name on R*® R™ by J[u@v} J(u)®v. Let wy denote the corresponding Kahler form

( )'
by the space of all possible complex structure J on R¥, equivalently, by the group O(k) as
s. Fix the complex structure J on R*. Then for each g © O(k) consider the corresponding
ex structure g~ 'J g on R* and by our convention, also on R* ® R", we have g*w; = wy-1,.
ler the form

® R™. Consider kp-form 1 = (k= 2r). A twisted average of these powers of Kahler

Ap = / (det)” ¢" 1 dg.
Ofk)

Ap i a SO(k) x SO(n)-invariant form, hence it induces a SO(k + n)-invariant differential
on Gi R¥*", When p = 1 it is called the Euler form and when p > 1 it is an “adjusted
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power” of the Euler form (the term of “adjusted power” was used by Le Hong Van in [10], b
the above construction, see [6].

Let ey, ..., ex is an oriented orthonormal basis in R* such that this orientation agrees
canonical orientation of complex structure J. Let f;,..., f, is an orthonormal basis of R". '

=@ i)A - Alex®@fi) A A1 ® fp) A Alex® fp), forp<n
is a canonically oriented complex rp-plane for complex structure J in R* ® R", i.e. £ €
and span¢ is O(k)-invariant. Each g € O(k) is extended on R* ® R" by g(u® v) = g(u) ® v
det(g|spane = (detg)P (on the right side, we consider the determinant of transformation g or

Applying Theorem 2, Theorem 3 and Theorem 6.1 in 8] for powers of the Kahler forms we ¢
the following.

Corollary 8. Let A, = fom(detg)" g" N dg be the form mentioned above. Then
[Apll™ = 10]* =

and

= [[Apl".

r
where ¥ 1s any form on a space orthogonal to R* ® R™.
In fact, the first conclusion of Corollary 3 had been proved in [6].

Now we consider the quaternionic Kahler form on a quaternionic Kahler manifold it is d
ag follows: on a quaternionic Kahler manifold M and parallel differential form determin
Sp(n) x Sp(1)-invariant form Q@ = (0% + 0% + 0%) on H" is called the quaternionic k
form and it is also denoted by {1, where w;, w;, wyg are Kahler form corresponding to co
structures I, J, K on H™ and where H™ is identified with a tangent space T, M for some z
(see [12]).

Tasaki [12] has proved that

E]: _/ e n'znl
m! z€5p(1) (2"’"]'

(Sp(1) = {2z € H, |z| =1} and Sp(1) actz on H" by the left handed multiplication).
We note that E = v AVt AvI J Au kA - AUy AUyt AUm 7 A v k, where vy, ..., v,
system of H-linearly independent orthonormal vectors in H™, satisfies the conditions in Thi
07
(2m)!
p=1,2,.., m with the determinants of transformations equal to 1, therefore det(g|spane) =
any g € Sp(1). Because of the same reason as for corollary 3 we obtain the following

2 for w = and § = Sp(1). Further since Sp(1) acts on spanv,, v,t, v, 7, v, k) for

Corollary 4. Let 0 be the form on H" defined as above. Then

‘ nm - _ ” n?:n . B
| (2m)! !
and 197 A vl = ™"l

where ¢ ts any form on a space orthogonal to H™.

In fact, the first conclusion of Corollary 4 had been proved in [12].
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4. PRODUCT OF MINIMAL CURRENTS

We consider the product M x N of Riemannian manifolds M and N. Let S and T be minimal
nts on M and N respectively. In general, one does not know whether the Cartesian product
" is also minimal on M x N. Applying the calibration method with using results on the comass
oducts, we can give some new examples of minimal currents as Cartesian products of minimal
nt in the class of normal currents.

First we recall some necessary notions and facts (for details see [4]).

Let o and S be a differential p-form and a p-current in a Riemannian manifold M respectively.
comass of ¢ is defined by ||¢||* = sup{|l¢:]l*, 2 € M} and the set of maximal directions of ¢
fined by

Ge) = | J{C(e:), liwall” = lil"} -

If ¢ is closed and has comass one then it is called a calibration. The mass of § is defined by
M(S) = sup{S(p). le]" =1}

is a surface in M then M(S) = volume(S). A current S in a Riemannian manifold is called
ologically minimal with respect to the mass if M(S) < M(S’') for any current S' homologous
. and the S is called homologically mass-minimizing current, or simply, homologically minimal
snt. A fundamental theorem of the calibration method [4, Theorem 3.6| says that a current §
Riemannian manifold M is homologically minimal if and only if there exists a closed form {1
that the tangent S, of S belongs to G(12) almost every where (in the sence of the measure
|. In this case, we say that S is calibrated by fl.

We have the following
orem 4. Let S and T be two homologically minimal currents in Riemannian manifolds M and

:spectively. If S 1s calibrated by © and T 13 calibrated by ¥ such that |[x Atyl|* = [z [¥yll*
imyz € M, y€N. Then § x T is homologically minimal in M x N.

tark. @ and ¢ can be considered as differential forms on M x N by identifying with =} ¢ and
respectively where 7y : M x N — M, w3 : M x N — N are canonical projections.

if. We have ¢ A ¢ be closed and

lle A ¥)* = sup{ll{e A ¥)(z.ull*, (z,y) € M x N}
= sup{ll(w: A¥y)l°, z€ M, y € N}

sup{lle: " [[¥,lI*, € M, y € N}

sup "‘Px".' sup ”’J’yjl‘

zEM vEN

lell* lili" =1

refore @ A ¢ is calibration on M x N.

On the other hand, since § x T, ,, = S, A T;, and p(S,) = 1, w('fy) = 1 almost every where
lave

(e X (S X Tz, q)) = p(fz}.qp[fy) =1 almost every where.

1y shown that § x T is calibrated by © A .
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Examples

Example 1. Let S be a special Lagrangian submanifold of R?™ and T be a homologically minis
current in a Riemannian manifold N. Then S x T is homologically minimal current in R?™ x
This follows form Corollary (3) and Theorem 4.

Example 2. Let S be a homologically minimal current in a 6-dimensional Riemannian manifold
and T a homologically minimal current and a Riemannian manifold N. Then from Corollary
and Theorem 4 it follows that S x T is homologically minimal in M x N,

Example 3. Let M be a 4n-dimensional quaternionic Kahler manifold and S be a quaternic
Kahler submanifold of M. Let T be a homologically minimal current in a Riemannian manii
N. Since S calibrated by differential form !-5* (m < n) where {1 is quaternionic Kahler form |
[12)) from Corollary 4 and Theorem 4 it following that S x T is homologically minimal curren

Mx N.

Example 4. For k even integer, by Proposition 3.1 in [6] the submanifold Gx R*** of Gy R/
is homologically minimal and it calibrated by form A, mentioned in section 3. Let S be a ho
logically minimal current in a Riemannian manifold N, then from Corollary 3 and Theorem
follows that Gx R**? x S is homologically minimal current in Gx R**" x N,

Remark. The abovesresults hold, in particular, when currents are replaced by surfaces.

Acknowledgement. The author expresses his gratitude to Prof. Dao Trong Thi for his scient
advice.
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KHOA HOC DHQGHN, KHTN, t.XII, n°1, 1996

VE pOI KHOI LUONG CUA TICH CAC DANG

Nguyén Duy Binh
Khoa Todn - Dar hoc Sw pham Vink

ieo phuong phip dang ¢&, vin dé xdc dinh khéi lwong va cdc huéng cuwe dai cda tich cic
%#n c4dc khong gian truc giao ¢ § nghia quan trong trong viéc tim cdc mit cuc ti€u thé
1o ham tich cdc mit cuc ti€u thé tich. Trong bai nay ching tdi ching minh mét ding thirc
lrong cda tich cdc dang khi mét nhin ti I3 mét dang xuyén hodc 12 mot dang trung binh
bdi mét nhém. Ap dung két qud niy, ching t5i nhin thiy duwoc mét s8 vi du vE cic mit
u thé tich.
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