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1. INTRODUCTION

n this paper, we study the control problem for dynamical systems whose state X; at time ¢
cribed by a stochastic differential equation of the form
dX, =b(X;,U,)dt + o(X,)dW,
{ Xo =zeR )
+ (W) is a wiener process defined on a stochastic basis ({1, %, P), satisfying the standard
tions and b, o are given function. -

\s usually the control process (U;) is supposed to be progressively measurable with respect
» filtration %, with value in a metric compact space A. For any admissible control (U;) we
ler the solution X{’(z) of (1.1) associated with the control (U;) staring from z at t = 0. We
Jer the average cost of (U/;) per unit time

1
T

hich to minimise the cost J(z, U) over the class U,y

T
J(z,U) = limsup 7 E | h(X,,Uy)dt
T—o0 0

Chis problem has been dealt with in various ways. In |7] admissible control are defined as
1aps from R? into A satisfying the Lipschitz condition and under his assumption the author
hown that there exists a Lipschitz feedback control. Kushner in [6] used relaxed control to
problems for “wideband noise driven” with are “cloge” to a diffusion. In this article we use
1ethods dealt with by [5| for discrete cases to develop these results. Under the elliptic and
1ess hypotheses we show that there exists an optimal markovian measure. Hence using the
ion theorem we can prove the existence of optimal markovian control process.

2. NOTATIONS AND HYPOTHESES
Hypotheses

.et A be a metric compact space, called the actions space and let

o : R% — d x d — matrices
b:RYx A— R* (2.1)
h:R*x A— R )
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Throughout this paper we suppose that the following hypotheses are satisfied:

Hypothesis 1: o, b,h are continuous functions in (z,a) and h ts bounded ; o locally Lig
continuous .

We consider the generator associated with the coefficients ¢ and b of the equation (1) §
by

L*f(z) = Zm,aza +2_bi(z,a)

where a;; is the 17**- element of the matrix oo (r] and b(z) = (b;,bg,... 04T .a € A
operator L defined on the space of twice continuous differential function with bounded deriva

, say CZ(RY)
Hypothesia 2: The operator L® 1s uniformly elliptic. That this : there is a @ > 0 such tha

co*(z) > al for any z € R?

2.2. Admissible control

We define admissible controls as the case of finite horizon. Let U be an admissible co
then X is the solution of (1) associated with U if and only if

t
ClAU) = £X) = 1K) - [ L% 1(X) dh
is a P- martingale after s for any f € CZ(R¢). Therefore we have the following definition

Definition 1. An admissible control is a term U? = (0, %, P, X;, Uy, v) such that:
(i) (0, %, P) is a probability space with the filtration 7.
(ii) U is a progressively measur.ble process with values in A.

(iii) (X:) is a continuous process with values in R such that

Cilf,U) = F(X) - f(X.) - f LV f(Xy) dh

is a P- martingale for any f € C?(R9)
(iv). Xo has the distribution v.

The set of admissible controls starting from v at t = 0 is denoted by Ao Let U® € 4
~ consider the payoff

Jo(v, U%) = hmsup [ h( X, Uy)d
where P(®) = [ ®dP. Our aim is to minimise Jo(v, U) over class A°(v)

3. Relaxed controls

We write for V the space of generalised actions consisting of random measures on Rt x
the form dt.q(t,da) where dt is the Lebesgue measure on R* and ¢(t,da) is a probability |
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any t € R*. With the vague topology , V is a metric compact space. This is the same as the
sle topology on R x A (see [3]).

We write, from now on, f(t, q) for fA f(t,a) g¢(da) for any measurable f. The space V
ndowed with its Borel o~ field V which is also the smallest o— field such that the maps
v [p+ J4 f(3,8) g(ds,da) are measurable for any measurable function f continuous in a with
ipact support . We also introduce the filtration (V;) where V; is the o— algebra generated by
measures {19 g: g € V}. The details of these definitions can be refereed in [1].

Bnition 2. A relaxed control is a term U = (Q, 7, P, X, q,v) such that
(i) (0, %, P) is a probability space with the filtration % satisfying the general hypotheses.
(ii} g is 2 V — valued stochastic process , 7, — adapted.

(iii) (X:) is a continuous process with values in B¢ such that

Culf,U) = f(X0) - F(Xo) - fD ‘ L L® f(Xu)g(h, da) dh (2.5)

P- martingale for any f € C}(RY
(iv) The distribution of X, is v.

The set of relaxed control with the initial distribution v is denoted by A(v). For any U € A(v)
consider the payoff

J(v,U) = hmsap f h(t,a) q(t, da) ds

J(v) =inf{J(, V) : U € Av)}; J*=infJ(v)

write J(z) for J(v) whenever v is Diract mass at z. The pair (v*,U*) where U* € v* is said
be minimum if J(v*,U*) = J*, The term (0, %, P, X;,q) is called optimal if for any z € R¢
relaxed control U = (0, %, P, Xy, q, z) satisfies the relation

J(z) = J(=,U)

;he following we can see that the set of admissible controls Ao(r) is complete in the sense that

J'= inf inf{J(v,U) : U € A(v)} = iﬂfinf{Jg(V, U®) : U% € Ay}

. Rules of Controls

Similar a in [1], we formulate the problem on the canonical space X consisting of continuous
ctions from R* into R? endowed with the topology of uniform convergence on every bounded
rrval. Let Xy be the natural right - continuous filtration and (X;) be the canonical process
ined on X'. We put

T=xxV; LTi=[\LeV

>t

finition 8. A control rule ( more briefly : a rule ) is a proba.blhty measure R on X such that
system (X, X;, R, Xy, g, v) is a relaxed control.
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The set of rules starting from v is denoted by R(u].. In term of control rules, optimal rela
control can be interpreted as a family of rules {R; € R(z) : = € R? such that J(z, R;) = J(z)
any z € R4,

We are now able to define markovian controls by two ways : either we consider them :
term U = (0, %, Pz, Xy, g, z) such that ¢ = dt x g(X,, da) or as a family of rules {R; : z € .
such that the term (X, Xy, X, Ry, z) is a family of homogeneous markovian process . We will &/
that two these definitions are equivalent.

Theorem 1. The far;;ﬂy of rules {R; : € R} is markovian iff there ezists a valued - meas
map ¢ from R? into P(A) and a relazed control (Q, %, P, X;,dt ¢( X;,da)) such that R, 1s the
of the couple (X;,dt x g(t,da)) under P given X = z.

Proof. The sufficient condition is obvious. The necessary one is proved by a similar way as Theo
6.7 in [1] and we do not reproduce it here. &

In order to show the existence of optimal rules we follow the argument dealt with by Kur
in [5] for the discrete case. First, we prove that there exists an optimal pair (v*, R*) such tha
is stationary distribution of X; under R. After that by virtue of recurrent property of (X,) we
show that this rule is an optimal markovian control .

Let U € A(v) be a relaxed control we put

T
ﬁﬂﬂr=%{[1pwua DeB(RY, T>o.
0

Hypothesis 8. For any v, the family
(7 (): T>0,U € Av)) (
13 tight,

Hypothesis 3 will be true if we consider reflected diffusion processes in a bounded domai
R? (see (7)) or if the following hypothesis 3’ is satisfied. Set

d d
®(z) = Z a;5(z)zizy 3 V(z) = (-Miz-}- %Za;,-(x] + Zb;{x, a)z;
ig=1 1 =1

and
Ot(r)= sup ®(z); V' (r) = sup sup ¥*(z)
|z|=v2r |z|=1/2r GEA

It is easy to check that ®* > 0 is locally Lipschitz continuous and ¥ is measurable (see [2]
374). Hence there exists the minimal diffusion process & generated by the operator

LT = 0™ () kS + ¥t -i
ok R [dr?' r].drl

Hypothesis 8’ The family {cr;-[-]; T > 0} where
g
aﬂm:%A P(¢ € B); T>0
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ndeed, let (11, %, P, X,, g) be an arbitrary relaxed control. We put H(t) = f; :’ };' ds then
asy to verify that 2¢ < H(t) <t where A and A respectively is the minimum of smallest
naximum of biggest eigenvalues of the matrix oo*(z) in z. Moreover , H(t) is a increasing
lon. We write for G(t) its inverse function. By the comparison theorems ( see [2], pp 371;
we have

IX(G{t)IP< & as

te other hand

T T G(T)
fn 1{e1>c}‘“2f0 1(1xm|=>c}d*=[u 1{x(u)|2>c) H' (u)du

G(T)
2 I[ Lixur >cpdu
0
implies that

L *
fj; Le>e) d‘E/; Lix(u)j2>c) ¢

ypothesis 3, {‘T—Er"() ,T > 0} is tight.

srem 2. (see [5/ Lemma 2.1 ) . For any initial distribution v and for any R € R(v), there
1 @ probability measure p on R% x A such that

f h(z, a) uldz, da) < J(v, R) (2.7)

/R ‘ L L* f(z)u(dz, da) = 0 (2.8)
ny f € C} . |

f. Let v and R € R(v) arbitrary. We put
T

1+(D) = -%Rj; 1p(Xe, ¢:)dt ; D € B(R® x A)

1 {7® : T > 0} is tight then there exists a sequence (T,,) — oo such that
() "2 ul)
t h is a continuous function then
fh(:r, a)p(dz,da) = nlingo / h(:c,ah%(d::,da} < limsup %Rf; h(X¢, q¢)
he other hand, for any f € C? we have
Gl 0) = 106) = 1) = [ 1% () dh

P- martingale then by the law of large numbers it follows that |

Ta
0= lim -;;Efn Lf(X:, q)dt = fL"f(::)n(dz, da)
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so we get [2.8) ']

Lemma 2. If {u.} v a sequence of probability measures satisfying Condition (£.8) then {u,]
tight. '

Proof. Since A is compact then the sequence of projections of {u,} on A is automatically
compact. Suppose that u,(dz,da) = pp(dz)vs(z,da) and b,(z) = [ b(z,a) va(z,da). Let X,
be the solution of the equation

dX, () = b (X, (t)) dt + o (X, (t))dW,
X,(0)=0€e R*

——
|

Then U™ = (0, %, P, X, (t), vo(X,,da),0) is an relaxed control and U" € A(éy). On the ot
hand, from (2.3) and (2.8) it follows that u, is the unique invariant measure of Equation (2.9) :

T
i (D=t -,}P/n 1p (X, (£)) dt

for any set D good enough. By Hypothesis 3, the sequence {yn"(-) = %‘.—Pf(;r 1p(Xa(t))dt 2
0;n > 0}. is tight then it follows the tightness of {u,}. The proof is complete. ¢

Lemma 8: there exisis a probability measure v* and a markovian control rule R* such thai
J(v* RY) = J*

1.¢, the pair (v*, R*) is optimal.

Proof. Let {v,, R,} be a sequence minimising J(, ). This means that

lim J{vn, Rp) = J"

=00

By Lemma 2, for any n there exists a probability measure on R x A , namely pn(-), such tha

fh{:c, a) in(dz,da) < J(vn, Rn)

From Lamma 2, the sequence {un} is tight. Then there is a probability measure u on R x A
a sequence (ng) — oo such that

k
Hny "2 [

Hence, we have

fh(x, a)u(dz,da) = P.m fh(:c, a)pin, (dz, da) < liminf J(v,,, Rp,) = J°
e ny— 00

and

f Eo el e, du] =

Suppose that u(dz,da) = v(dz) - g(z, da). We put

L

b (z) = [ b(z, a) g(z, da)
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the equation .
dX, = b(X,) dt + o(X:)dW, (2.10)

3 a unique stationary solution with the stationary distribution v(dz) It is easy to check that
air (v, R, is optimal where R, is the law of (X, dt - ¢(X ,da) on X. The result follows. ¢

Since the diffusion matrix a(z) = o(z)o*(z) is non-degenerate then the invariant measure v is
lutely continuous with respect to the Lebesgue measure on R? and support v = R? (see [AK])
the limit

r .
Tlil-?;o lEj; j;h[Xt,a)q(X,,da)dt=fh(:,a}q(:r,da]v(da:) = g

g for any z € R* as ( see [7] Th. 6.1). This means that g(z, da) is a markovian optimal
rol.

Denoting A(z)f = 2 ¥ ai; %&; and < b2,V f >= Y b(z, n)ng?, we now consider the equa-

Alz)®+ < b9, VO > +hi(z) = J* (2.11)

equation has a generalised solution ® since ¢ is non degenerate. Let
s(z) ={a € A: A(z)®+ < b%(z), V® > +h(z,a) < J*

2.10) s(z) # @ and g(z,3(z)) 3 O for any z € R? Hence there is a measurable selection
RY — A such that

1 a%d o yy OO 5 o 4
: Z""”a_;fa"}; +) bz u (2N 35 +hEu () <V
rtue of the generalized Ito’s formula (see [4]) we have
t
E®(X,) = E®(Xo) + Ef (A(z)®+ < b*7, V@ >)ds
0
< E®(Xo) + Ef[J' - h(X,,u*(X,)]ds
inequality implies that
1 (T
limsup E;Ef h(X,,u(X,)) dt < J*
0
means that u* is an optimal control pruceas..

wem 8: Under Hypotheses 1,93, there ezists an optimal control process u* which satisfies
Juation
A(z)®+ < b* ,V® > +h(z,u(2)) £ J°

from this result we can follow that the set A° is dense in £ as we have mentioned. The proof -
y 8o we obmit it here.
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TAP CHf KHOA HOC DHQGHN, KHTN, t.XII, n°2, 1996

PIEU KHIEN TOI UU CAC QUA TRINH KHUECH TAN
VOT GIA TRUNG BINH THEO THOT GIAN

- Nguyén Hitu Du
Trudng DH Khoa hoc tu nhién - DHQG Ha Noi

BAi bdo d8 cip dén bii todn diéu khi€n t8i wu cic qué trinh khuéch t4n véi gid trung b
theo th¥i gian. Dwéi gid thidt vE tinh compic twong ddi cda 1é6p céc digu khi€n va sy khong s
bi€n cda hé 88 khuéch tén cda qud trinh tin hiéu, nh phuong phép twong ty nhy trong [5], chd
t8i chi ra sy t3n tai cda di¥u khi€n t8i wu Markov. Bai bdo 1A sy mé& réng phwong phép trong
tir r&i rac lén trudmg hop lién tuc.
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