EE s o LIS = B e wiiie T R— — _._H,);

VNU. JOURNAL OF SCIENCE, Nat.Sci., t Xl n4 - 1996. iq

ON THE EXISTENCE OF THE SOLUTION AND DU

VARIATIONAL FORMULATION FOR THE OPTIMIZA"
OF THE DOMAIN IN ELLIPTIC PROBLEMS

Tran Van Bon b
Institute of Marine Army 4

1. THE EXISTENCE OF THE SOLUTION OF THE PRIMARY PROBIjj

Let us consider the following problem: Let (v) C R? be the domain
’ Qv) = {(#1,z2) |0 <22 < 1

* 0 <z < v(zz)}

V(%) (see Fig.1)

where the function v is to be determined from
problem Ji(v) = minyev,, Ji(w),i=1,2.
v Usa = {w € C9([0,1]),0< e < w < B,
ldw/dza| < C1, [} w(za)dzs = Ca)
P Here B, a, Cy, C, are given constants, Ji(w) = J;
x, i=12and

11 (y(w)) =f [w) - Zo?dz,  Zo = const (given)

N(w)

Ja(y(w)) = j }IVy(m)E? dz,

(w
and y(w) is the solution of the following problem:

—Ayw)=f in Qw),
y(w) =0 on Tlw, ;
dy(w)/dn + apy(w) on M(w) -Tnw =Ty,

where f € Ly(§p) is given; 5 = (0,8) x (0,1), ap is a positive constant.
Let us set (the space of test functions):

V(w)={z€ H'(Qw)) | z=0on Ty}

A function y(w) € V(w) will be called a weak solution of the state problen
(1.7) if

a(y, z) + Ay, 2) = (f, 2)o.aw) ¥z € V(w),
where aly, z) = (V¥ V2)o.0(w),
Ay, z) = ao(y, 2)o,rn,

Using the trace theorem it can be shown that the bilinear form a(y,2) + .
bounded on V(w). On the other hand, the generalized Friedrichs inequality ens
V(w) - ellipticity of a(y, z)+ A(y, z). From this and the Lax-Milgram Theorem the ¢
and uniqueness of y(w) follows.
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shall prove that the optimization problermn (1.2) is solvable for any of the cost
nals Ji, 1 = 1,2,
sm 1. The problem (1.2) has at least one solution for every cost functionals
1,2
oof: Let us consider a minimizing sequence {w, } such that Ji(w,) — infyev. . Ji(w)
0o. Since the set i/, is compact in C([0.1]) then by Arzela - Ascoli Theorem,
y choose a subsequence, denoted again by (w.,) such that w, — v in C([0,1]). We
) v € Uga. Let Q = Q(2) denote the domain determined by I' = [y, T'ny = Lo
urthermore, let @, be domain bounded by the graph of the function w, and let
‘the corresponding solution of the state problem (1.8), where Qe ) =R, Ba.i=
nw, = T, and V(w,)is determined respectively. It is readily seen from (1.8) that

[ wm@de < [ finds <Uifloas - Ilon, (1.9)

i1

1g use of the generalized IFriedrichs inequality we obtain
I, < [ Clovw)Pds (1.10)
ft.

» ' does not depend on m.
ombining (1.9) and (1.10) we arrive at the following estimate

i, £Co ¥n (1.11)

v Cg 1s independent of n.
et us choose 8§ > 3 and consider the set

Vi ={ve HY Q)] v=0 on Iy}

b s = (0,8)x (0, 1), Ty = (& 22) | 0 < xy <1} Then there exists a constant #(8) > 0
that

./ |Vu|*dr > V'(ﬁ)“‘-'ﬂlf.nn

2

very n we extend y. by zero into the whole domain €2, We then have
“HH 1.5is = HH|'!i,n.. 3 Hr: Y,

sfore, there exist a subsequence of (3, ), denoted by y, again, and y* € Vs such that
w (weakly) in V.

et y° # 0 on the set 12 Q4 \Q, mes(E) > 0. Let Q, be the domain define by the
) of V 4+ ¢. Obviously, there exists ¢ > 0 such that mes(£ N (Qs \ Q) > 0. We have
Q, for m big enouglh, and therefore

] (ym —y" )dx 2] (ym — ¥ )2dx =] y 2dz > 0 (1.12)
1, En(f\ N, En(fla\fie)

he other hand, y, — y* im Ly(§s), n — oo follows from the weak convergence of (yn)
in V; and Rellich’s Theorem. Thus we arrive at a contradiction with (1.12), i.e.,
D in €4 \'Q. Denotimg y =y o, we obtain y=0on I', ie,y€V(v). Let aze V(v)
ven. There exists a sequence (6,), 6. € C*(Q) such that supp ¢ NI = 0, ¢n—2z
(©). (Or in H'(Qy iff the extensions of Z and ¢, are considered ). We may write

Vim, v"mn}ll.ﬂm + vy (Urn - On }U,r,\'m = {f ‘:’rs)of Qo
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or all m sufficiently big. Passing to the limit with m — co we obtain i
(vy-: Véﬂ)ﬂ,ﬂg + ﬁﬂ(y- ) éﬂ)n.r'\r' = {f; ﬂbn ){},ﬂg (Fﬁ = 395 \ I',;}

Then passing to the limit with n — oo we are led to
(Vy' ;Vz)o,ﬂ. -+ ﬂﬂ(y-n Z)O.PN‘ = (f! z)ﬂ,ﬂa

|
Asz =0, y* =0in Q;\Q, we may replace in (1.13) Qs by Qand T by T'. Conseq
it holds
¥y =y (v)
The infinition of y, implies
”Vym”g,nm * f"“ﬂ”ymHg.r’Nm = (fiym)o.a..

Usinig 1he extensions and the weak convergence in Vj , we obtain

IVymll3,0 + @olltmllo ry, = (F,4mose — (f.¥ Do,

=(f,v )o.a=IVy 3.0, + aollyllo.r,

Since the trace of operator is completely continuous and y,, —y* (weakly), in Vj, v
YYm —7Y" in La(Tn,), and ; ;
“yﬂl"{l,l‘ua St ”Ff ||11,1‘N,

Combining (1.15) with (1.16) we arrive at
L [ 2 — 1197111 3,

Using also the Rellich’s theorem we obtain

llym 1% 020 = 7117 2,

Then the strong convergence y, — y* in Vi follows from (1.18) and the weak |
gence,
We consider the case i = 1. From (1.18) and (1.14) we deduce

Jim Jy(wp) = lim Ji(ym) = lim [[lym - 2o0ll3.a, — 120/l .
= lv" = zoll3 0, = 2013 a0 = lU(v) = 2050 = (W(v) = () = inf Ji(w)

Hence v is a solution
For the case i = 2 we have

Jim Ja(wm) = lim Jo(ym) = lim [[Vymllo,a, = 195" llo.qs
= [[Vy()lle.n = Ja(y(v) = Ja(v) = inf Ja(w)

Thus v is the solution. Q.E.D.

2. DUAL FORMULATION OF THE STATE PROBLEM

It is clear that the state problem (1.8) is equivalent to the following one
y(w) € V(w) such that

L{y(w)) < L(z(w)) Vz(w) € V(w)
where  L{z(w)) = a(z,2)/2 + A(z,2) R — (f, 2)oa(w)
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Bon 1. Let T be the boundary of the domain (2(w). Let v € HY*(F), v = 0 on
note Zv = % € V(w) an arbitrary extension of v into (w) (see e.g. [3], p. 103 for
nsion). Let M;(w) C [L(Qw))]* be the set of vector functions A such that the
r T(A) defined through the relation

< G{A),v >= j (Agradi — fu)dz,
w)

ih(wJ into H-""%(I'ny).. (Here H-V%}(T'pn,) is the space of linear continuous func-
in H’”“(f‘,\rw) = v.V(w))
tk 2.1. From the definition of (G(A) it follows that

| < GA), 2> | < CAelliya,rnve

e values of G(A) do not depend on the extension Z. Moreover, A € M; satisfies the
ng condition (in the sense of distributions)

divA+ f=0 in Quw)

tion 2. Let A;(w) C M;(w) be the set of all A € M,(w) such that G(A) € Ly(Fpny)-
will be called the set of admissible functions. Denote

M, = U As(w) (2.2)

Jela(w))

:he definition of A, it is readily seen that for every A € M,, there exists f(A) (where
livAd) such that
G(A) € La(Tnw)

st My, is a linear manifold and & is linear on M,,. We define a bilinear form on
M, as follows:

2
A W Hiwy = Z A pi dr + _u{',"l / G(A)YGp)dS (2.3)

“[“")i:t [ N

is clear that there exists constants C3, ("4 > 0 such that

Call Ml < 1M ey = (A Vaw) < CallMmw (2.4)
2
where[|AI3,, = Y IIllf awy + IGONE 1y

min(1,a5'), C4 = max(l,a;"'). The bilinear form (2.3) is symetric, continuous and
rely definite (with the norm || - ||sw), hence it represents a scalar product. The
sld M with the scalar product (4.3) will be denoted by H(w). Let us define

Hi={AAeMw, Ive V(w),d=Vv,as+G(A)=0 on Tnu} Ha=Ap(w)

forth we write A = A(v) if A= Vv
ta 2.1. H, and £, orthogonal subsets of H(w).
roof: Let A€ H,, u€ Il we then have

(A i) prqw) = j p.gradvdr — ] v.G(p).ds =0
Mw) b

]-Nuu
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S - _ S

making use of the definition of Ag, i.e., HiLH,; Q.E.D. i

Theorem 2. ( Principle of Minimum Complementary Energy). Let y(w) be the
of the problem (2.1). Then the objective functional

S(A) = 1/20Mlswy
attains its minimum on the set A;(w) of admissible functions, iff
A = Ay(w)) = Vy(w) 1

Moreover, it holds

S(Ay(w))) + L(y(w)) =0

Proof: For brevity we shall omit w what follows. First, we shall show that A(
In fact, y is the solution of (4.1}, hence it holds

/ My)grad vdz —f agyvds = (f,vlon Vv e V(w).
a My
Consequently, we arrive at

/[A(y)grad v— fv]jde =< G(My)), v >= --/ opyuids,
i :

"

i.e., G(My)) = agy € La(I'n), hence A(y) € Ay NI,
Let A arbitrary element of A;. From the definition | we have: for all v € 1'/%(1
Oon Oy, W= 2v

< GA),v>= /(Agra.dw — fw)dz
J
< GO, v > = fn (A(w)grade — fa)dz,

therefore we obtain
<G =Ay),v>= /[,\ — My)|gradidz,
0

- making use of the linearity of G(A) on H,i.e., A = A(y) € Ag = H, for any A € Aj.
We may write (on the basis of Lemma 2.1).

S(N) = 1/2/Ml% = 172013 = Aw)llFr + 1/211M15

From this it is clear that S(A) attains its minimum on Ay, iff A = A(y) =
We have

25(\)) = INw)IE = Z INWIR o+ a / G(AW))ds

=-—Zua y)uonwa/yvydrwanj ity

I—I Cn
= ~Z||dy/da.-||s,n e j i ] sodiaL ()
i=1 T Q
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() + L(y) = 0. Q.E.D.

» ngw may rewrite the cost functional Jy(w) as follows
Ja(w) = |Mu(w)IiF aruy = 13 (A (w)) (2.5)
e optirnization problem has the followingequivalent form

J3A0) = min J3(A(w)) (2.6)

weliqa

g.‘%')u[u_.') is the solution of the optimization problem
S(A(w)) < S(A) VA € Ap(w) (2.7)
be a solution of the optimization problem (1.2) for i = 2. Then
J3 (M) = Jofv) < Ju(w) = J3(A(w)) Yw € Uy

s from (2.5). Hence v is also a solution of the equivalent optimization problem
Using Theorem .1 we conclude that the problem (2.6) has at least one e solution.

REFERENCES

. Begis. R. Glowinski. Application de la Methode des Elements Fines 4 ’Approxim-
ion d’un Probleme de Domain Optimal. App. Math. Optimisation, vol. 2(1975),
5. 130-169.

Haslinger, 1. Hlavacek. Convergence of a Finite Element Method Based on the
ual Variational Formulation. Apl. Math. 21(1996). pp. 43-65.

Necas. Les Methodes Directes en Theorie des Equations Elliptiques. Academia
rague 1967,

(1. Ciarlet,  The Finite Element Method for Elliptic Problems North - Holland
ITH,

4l KHOA HOC, KHTN, DHQGHN, t.Xil. n” 4. 1996

VE SU TO'\I TAI NGHIEM VA PHAT BIFZU BIEN PHAN

| 30)1 NGAU CHO BAI TOAN TOI U'U MIEN
DOI VOI PHUONG TRINH ELIPTIC

Tran Vin Bdn
Hoc vién H&i quan Nha Trang

i muc dich phan tich phan tir hiru han tryc tiép va d6i ngau cho bai todn téi wu
doi véi bai toan EIlptic trong bai viét ndy chung ta c}urng minh sy ton tai nghlem
ai toan truc ti€p ma chi yéu la sy ton tai phin ti crc tidu cda céc phlem ham gla
.d.p hop céc ha.m chap nhan duofc va trén co s& nguyen ly ning lwrong phat bi€u
phan doi ngau cda bai todn da duwoc trinh bay, méi lién hé giira &1 gidi yéu cda
pan truc tiép va 1o gidi déi ngau da dwoc chirng minh.
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