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ABSTRACT

This paper deals with the comparison problem of stability of differential eqi
perturbed by non - linear small noise. We suppose that the the linear system

dZ; = a(t,w)Z dt + A(t,w)Z; dW, ; Zo=z€R?
is strictly stabler than the system
dY, = b(t,w, i) dt + B(t, Ys,w) dW; ; Yo=yeR®
then, under the assumption of the regulity of (1), it is proved that the system
dX¢ = (a(t,w)X; + f(t, Xy)) dt + A(t,w)Z, dW, ; Zy=2€R*
is strictly still stabler than System (2) provided f(t, z) satisfies the condition

|f(t,2)| € k.min{|z|* |z|'"""}; a>1>8>0

[. INTRODUCTION

As is known, investigating of the fact whether a given dynamical system is st
unstable is important in both theory and application. Therefore, many definitions
stability of systems are given (see, for example, [6], [7],[3]) and there are a vast a
of works dealing with criteria by which we know whenever a given differential equz
stable ( see [6], 7], [3],...). Among these criteria, the Lyapunov exponents of soluti
a powerful tool mainly because of its importance for explaining chaotic behaviour
systems (see (1], [2],...). Furthermore, in order to study the stability of linear syst«
general, we have only to consider their Lyapunov exponents. If they are negativ
their trivial solution X = 0 must be stable.

But as to our knowledge, there is no definition which allows us to compa
"degree” of the development of systems even they are defined in a same space an
the same dimension. In some cases, this comparison is necessary because many te
problems require us to choose a system which is the less chaotic the better ame
given systems. '

On the other hand, studying the Lyapunov exponent of a function means t
compare this function with exponential functions. However, the class of expo
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contains not many informations of growth rates because they are monotonous.
e, if we replace this class by a larger one, we hope to have more informations
e behaviour of the considered function. )

ng on this idea we give a concept for comparing the growth rate of two systems.
sical definition of stabilities can be ohtained by comparing the considered system

trivial system X = 0.

des, bv Lyapunov Theorem for the. ‘ndhliity (see [4 ,pp. 267), if the linear system
Jentialy stable then it is still stable under small noise. We want here to generalise
ult in the point of view of preserving the "order™ of stabilities. It is proved that
m (1) is stabler than (2), then it is stabler than (2) under small non linear noise.
> article is organized as follows: Section II introduces a definition for comparing
sility between two systems whose states are described by ‘stochastic equations in
¢ of real noise or white noise and we give some remarks on this definition. In
I1I, we formulate the main result. [t is shown that under the small noise f(t,z)
» regulity of the linear system, System (3) is stabler than (1).

1. COMPARISON QF GROWTH RATE OF DYNAMICAL SYSTEMS

(€, F¢. t > 0, P) be a stochastic basis satisfving the standard conditions (see [5])
.t > 0) be ad- dimension wiener process defined on (2, F, t > 0, P). We consider
astic system described by the following equation

{ da'{f = &(1,.'\'[,W)f1lf +."“£,.X;.LJ}(“V3

9.
Bl i (&3

orall € RY , ((a(t, x)) and (A(t, r)) are two stochastic processes F;- adapted with
n 7 and in the space of d x d - matrices respectively such that

a(t,0)=0 A, =0 P—-as (2.2)

spose that for any » € R? Equation (2.1) has a unique strong solution. Let us
he classical definition of stability in Lyapunov’s sense. Denote by X(t,z,w) the
1 of (2.1) starting from = at t = 0. From (2.2), it follows that X = 0 is a solution
tion (2.1).

ion 2.1. The trivial solution X =0 is said to be stable if for any ¢ > 0

lim P( sup |X(Lz,w)| > :) = (2.3)
==l 0<t< 0o

9] pp. 206 ). It is known that in fact considering whether a system is stable
means we compare its solutions with constant functions because the relation
P\U r,w)| < € means |X(t,z,w)| < ¢(t). for any ¢ > 0 where ¢(t) = eVt >0.

grvl that this definition gives no information when the solution X(t,z) tends to
ve or to 0. Thus it requires us to consider a larger class of functions to know more
avior of systems. We now realise this idea.

sidde of Equation (2.1) we consider the equation

{ dYg = b(t,‘f},w:‘(“ +.H(i, }f‘:.i))fflr'yt

24
Yo =weR" (#4)

(b(1. y)) and (B(t,y)) satisly the same hypothesis as (a(t,y)) and (A(t, ), i.e.,
b(t,0) =0 B(1,0) =0 vt >0 P—as (2.5)
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We writé for Y(t, ) the solution of (2.4) starting from y at t =0 '
Let € the set of all' positive continuotis furctions from [0,00) into RY a.nd%
subsét of €. |

Defifiitiolt' 2.2. The trivial solution X = 0 of System (2.1) is said to be stabler ¢
solution Y = 0 of System (2.4) in the comparing class M if for any ¢ € M, the re|

Iin;]]' P{lY(t,y)] <@ forall t>0}=1 9
y— |

follows that é

lim P{|X(t,z)|<q forall t>0}=1 1

Definition 2.2 is an extension of the classical one of stability. Indeed, we h
following theorem.
Theorém 2.3. System (2.1) is stable in sense of (2.3) if it is stabler than the trivial
= Yo=y€ R

on the class C.

Proof: If (2.1) is stabler than (2.8), then it is easy to see that (2.1) is stab
every solution of (2.8) is constant. Inverselly, suppose that (2.1) is stable and ¢
Mi:a([ ¢t = 0 then Equality (2.6) does not hold. Meanwhile if ﬂ{i::(l' g=k>0th

o0 <t<oo

hods which implies that

1= hmP ( sup |X(t,z)]<a)< I1m P(IX(t,z)|<q t2>0)

<t < oo

i.e System (2.1) is stabler than System (2.4). Moreover, it is easy to prove that

Theorem 2.2: If M C C consists of all functions having the exact limit as 1 —
every stable system is stabler than any unstable system.

Example: Both two systems

X-X42X=0
Y -2Y +2Y =0

are unstable. But it is easy to see that (A) is stabler than (B) in C.

I1I. LINEAR REGULAR SYSTEM.
We introduce ‘the so-called regular system as in [4]. Let us consider the lineai

dZ, = A Z,dt + B, Z, dW, Zo=z€R®

| where A;, B are two stochastic processes with values in d x d- matrices satisf:
condition.

F T
P{[ |At|dt<:oo}=P{j |Bi|dt < o0} =1; forany T >0
0 ]
This condition ensures the existence of strong solutions of (3.1).
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Z(t,z) be the solution of (3.1) starting from z. We write for Az] the Lyapunov
ht of Z(1,z) defined by

Alz] = limsup }l— In|Z(t,z)] (3.2)

| —

case where the limit in (3.2) exists, we say that Z(t,z) has an exact exponent.
is known that (see [1], [6]...) the Lyapunov spectrum of the solution of (3.1)
s of n random variables, namely,

hid i (33)

tion 2.3. (See [4] pp. 165). System (3.1) is said to be regular if there exists a
nental system of solutions Z(t) such that the column vectors of Z(t) has the exact
>nt and takes all values )i, i=1,2,.. . din (3.3)

t the comparing class M consist of elements ¢ € C having the exact limit
- - '
rlll‘:’l F In gy =q ; (34)

v Lthat (2.1) is strictly,stabler than (2.4) if the condition (2.7) is replaced by: There
M such that ¢ <7 and

J'_'_T}J P{IX(t,2)| < o/ Vi >0} =1 (2.7")

sy to see that (2.1) is strictly stabler than (2.8) in M if and only if (2.1) is
ently stable.

‘'em 3.2. Suppose that (3.1) is regular and strictly stabler than the system
dY; = a(t,Yy) dt +o(t, Y)dW, Yo =y € R" (3.5)
(the perturbed system
dX.: = [A X + f(t, X)) dt + B X, dW, Xo=z€eR® (3.6)

| strictly stabler than (3.5). Where [({,r) is a locally Lipchitz function satysfying
mndition: There are constants a > 1> 8 >0; K >0 such that

| [f(t,2)] < K.min(|z|*, |2|' ") . 3.7)

L

roof: From the assumption of the regulity of (3.1), we can find a fundamental
n of solutions of (3.1), namely Z(t), such that: if

®(t) = Z(t). exp{—At}, A = diag{Ay, Az, ..., Ad}

tl_l.l'g‘lo?ln |®(t)] = ;l.]..To -t»ln [@='(t)|=0 (3.8)
»fore, for any v > 0 there is a random variable N such that
|2(£).273(s)| < N.exp{(Ma+ )t - (Aa—7)s)  P-ass (3.9)
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Let ¢ € M such that
s}in}] P{lYy(t,y)|<q Vt>0}=1

Since (3.1) is strictly stabler than (3.5), then there exists ¢ € M, 7° <7 anl

lirré P{|Z(t)z| < q; Vi>0}=1

This equality implies Ay < 7 < g. Therefore, we can choose v in the inequality (3!
that

(%) %T<E and Mg+79<§ when Ag>0

(#x) Xa+7<7T and (a——l},\d+{a+l)7<0 when Az <0

It is easy to see that (3.16) is equivalent to
X, = Z(t)z + [ Z(t).Z2="(s)f(s, X,)ds
Therefore
|Xel < 12(t)=] + /ﬂt |12(t).27"(s)f (s, X,)lds
<|Z(t)z|+ K ]ni |Z(2).Z=1(s)| min(| X, |, | Xs)*~#)ds

We consider two cases:
a). A4 >0 By (3.13) and (3.9) we get

[ Xt| < exp{(Ad + 7)t} [N.|:r.'| + K.N A exp{~—(Aq — *r]s}.])\’.|1_’5ds]
= exp{(Xa + 1)t} [N.lrl +K.N f exp{((2 = B)y — BAa) .s}.Je"(Pet1)s x 1=84,
]

By virtue of of Bihari’ s inequality ( see [4] pp. 110 ) we get

t 3
| X € exp{(Aqa+ 7)i} [1'\.-r.|.."':|JB + Blf.N/ explos} ds} P-as
0

where ¢ =: (2 — B)y — Bra. Hence, there exists a random variable M such tat
z: |z|<1 we have

| Xt| € M.exp{(A¢ + 7 +7)t} P- as where @ = max((].%)

For any ¢ > 0 fixed, it follows from (3.12 (%)) that there exists a random T} >0 su
P{M.exp{(Ma+y+3)t} < q VE>T ) > 1—¢/2

On the other hand, on [0, 7], the solutions X(¢,z) depend continuously o1 the
condition z, then we can choose an § > 0 such that

P{|X(t,z)| < q Vte[0,Th]} > 1—¢/2 when |z| < &
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3 (3.14) and (3.15) it yields
P{[X(t,z)| £ q VE<0} > 1—¢ when |z| < &

ns that (3.6) is stabler than (3.5).
). Using (3.13) we have

L
X < 1Z(0)z] + +K f 12(0).27) (). .| ds
4]
4
< O (N Ja 4 KN [ expl(d+)s = (ha = 1)s}X, |2 d]
0
‘ N .
< plratr)t [N.|z| + K'N_/ ealle—(-\cﬁ-‘r)l‘xda ds]
0

= (a—1Aa+(a+1)y
virtue of Bihari’s inequality which a > 1 (see [4], pp 110), it yields

N.|zg|exp{{Xaq + )t}
X(t,z)| <
- [I — (a = 1)|zof*—1 x fr: e?* ds) T

p is small.
ng the same argument as above, we conclution that Ye > 0, there is.an é > 0 such

|r| < & -then
P{X(t,z)|<q Vi20}>1-¢
the result follows.

wry 3.3 (See [4] pp.267 ). If the top Lyapunov exponent of (3.1) is negative, then
turbed system (3.6) is stable.

le 3.4 The assumption of regulity of (3.1) is satysfied ‘when (A{) and (B;) are
tionary processes. The matter of fact is that is that in this case (3.2) generates a
e (Z(t)) and by Floqué’s representation ( see [1] and [2])

)

Z(t) = S(t) exp{Ai + o(t)}, —0 as t 00

B(t ) is a random process with values in the sphere {z € RY: |z| = 1}
) note that Theorem 3.2 may not be true if conditions 3.7 is violtaed as the following

les:
File: 3.5 Let us conside the logistic equation

dX, = (aX; + /Xi)dt + 0. X0 dW; (3.15)

o denotes the Stranovich equation. It is easy to see that (3.15) has the solutions

X:| = z.exp{at + o. W} x [|xn[§ + %ftexp{-—g(as + a‘.W.}}ds]i
0

|
» other hand System (3.15) is a perturbation of

dZ; = Q.Zl + \‘.T.Zg o Wf _ (316)
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which is stabler than o
dY, = 5 Yedt

when a < 0. Therefore, (3.16) is stabler than (3.17), but (3.15) is not stabkr ths
i.e., the assertion of Theorem 3.2 is not true. We remark that both Systen 3.15
are unstable.
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TAP CHi KHOA HOC, KHTN, PHQGHN. t.XII, n® 4, 1996

VE BAI TOAN SO SANH TINH ON PINH CU2
HE PONG HOC CHIU NHIEU NHO

Nguyén Hiru Dur
Dai hoc Tu nhién - Dai hoc Quéc gia Ha Néi

Bai bdo dua ra quan niém mdi vé sir so sanh tinh 8n dinh cda hai hé d
Dinh nghia ¢6 dién vé én dinh cé the nha.n dwoc bing cich so sinh hé 1a ch
tam thudng. Bai bdo cing dé mp t&i viec mé réng dinh Iy Lyapunov vé tinh
theo quan diém bdo toan th ty én dinh cda hé dong hoc chiu nhieu phituyér
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