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ON ARMSTRONG RELATIONS IN THE CLASS O
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Abstract. A class of multi-valued positive Boolean dependencies (MVPBD) is i Some
results about the present of sets of multivalued positive Boolean dependencies and Armstrag relations
for a given set of MVPBDs are presented.

1. INTRODUCTION

In the paper, a type of multivalued logic and some of its properties are presented. (n the basis

nf this logic, a class of multivalued Boolean dependencies that is a lization of soae kinds of
dencies such as the ional d. dencies, the positive Boolean dependencies is ntroduced.

The main purpose of the paper is to develop some results about Armstrong relations, vhich have
been obtained from the genen.lm:d positive Boolean dependencies in [6]. Some result about the
of sets of multivalued positive Boolean dependencies are given. The pape also show

thnt in some cases a m-Armstrong relation for a set of multivalued positive Boolean dpendencies
does not exist. With the aid of Equivalence Theorem, a necessary and sufficient cadition for
a relation is an Armstrong relation for a set of multi-valued positive Boolean depadencies is

formulated.
2. BASIS DEFINITIONS

Definition 2.1. Let U = {4,, A, .., A,} be a nonempty finite set. Say that, a m.lci.valusj
logic is defined over U if for each attribute A; € U, 1 <1 < n there exist a finite set F called th
valuation domain of the attribute A;, which satisfies the following:

1. B; c [0, 1],

2. If s€ B; then 1 —s € B; and

3. 1€ B;.

Let K = U B;. Each element s in K is called a logical constant. For sy, s2 € { we denne

logical wnnecnv:s V, A, =, =, s on K as follows: s; Vs; = max{sy, s2}, s1 A sz = nin{sy, s3}
8y — 83 = max{l— sy, 52}, sy :l-s,,s. ms;—l:f:, = s3;, and s; = s, = Cif 8, # 8y,
These connectives are also called disj , implication, negation and :omparison
correspondingly.

Let B = By x Bz X ... X B,. A mapping z: U — K such that z(A,) € B; with '1€i<n
said to be a valuation over U. If £(A;) = z;, 1 <1 < n, then z is denoted by (z), 22, .., Zn) € 1;1
It is clear that the set of all valuations over U is finite.

Definition 2.2. Elements of U are also called logical variable or elementary variabes. Logica
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stants in K and logical variables in U are said to be formulas.

Let g, h be formulas, then we can construct new formulas by using logical connectives v, A, —
,, = and the given formulas. It means that (9 A k), (gV k), =(g), (9 — h), (h = g) are new
mulas. By F we denote the set of all formulas constructed from U using logical connectives
ntioned above. Each f € F is said to be a multi-valued Boolean dependency (MVBD).

Assume that f € F, z = (21, 23,..., z,) € B. We now denote by f(z) the truth valued of
the valuation z. This value is defined as follows: If f is a variable A; then f(z) = z;. When f
:onstructed by formulas g, h and logical connectives V, A, —, =, ~ we define f(z) as follows:

= (g * h) them f(z) = g(z) * h(z), where + € {v, A, —, =, m}.

reorem 2.1. For any {z1, Z2,..., Zn} C B, y1, ¥2,..., ¥u € K, there always ezists a formula f
th that f(z) = i, 1S9 <h.

sof. For each z; € B with 1 < i < h, suppose 2, = (2, Ziy, -, %i,). By g, 1 <i < h we
1te (A =z, ) A (A2 =z, ) A A (A~ 2, ) Ayi. Set f =g, VgaV...V gy It is not difficult
verify that the formula f satisfies the theorem.

It is clear that, for any f € F, z € B then f(z) € K. For brevity, instead of (g A &), (gV h),
7), (9 = h), (b = g) we write gA h, gV h, =g, g — h, h ~ g correspondingly.

‘finition 2.3. Let T be a set of valuations over U and let g and h be formulas. We say that
ind h equivalemt over T, written by g Z A iff for any z € T, the equality g(z) = h(z) holds.
aarly, this is amd equivalence relation. When T = B we say that g and h equivalent and write
= h.

Let U = {Ay, Az, ..., An} be a nonempty finite set of symbols called attributes. Corresponding
each attribute A, there is a set d;, 1 <1 < n called the domain of A;. Assume that every d;
itains at least two elements. Suppose that there is a multi-valued logic defined over U. Let
1ote each domain of 4;, 1 <1< n by B, assume that B; satisfies conditions in Definition 2.1.

A subset R oif d| x dz x ... x dy, is called arelation over U. Elements of R are called tuples and
usually denote tuples by u, v ort, etc. The class of all relations over U is denoted by REL(U).

r Re REL(U), te R, A€ U, we denote by t.A the value of ¢ for the attribute A, and by t.X
s set {t.A|4 € X}

Aiition 2.8 For each seb diy 1'S 1 <, we consider’a mapping.n; s x dj =B}, sibisbring
: following:

L (Va € di)(aifa, a) =1),

2. (Va, b € di)(es(a, b) = ai(b, a)),

3. (Vs € Bi, 3q, b€ d)(aifa, b) = 3).

It is not hard to verify that, the mappings a; in the above example satisfy the demands of
finition 2.4

For each m & 0,1, f € F, £ € F, weset T™; = {z € B|f(z) > m} and T™g = {z €
f€E, [(z)=m}

finition 2.5. Let f and g be formulas and m € [0, 1]. We say that g m-implies f or f is
implied from @, written g|-=-f, iff for any z € B, satisfying g(z) > m, then f(z) > m. Two
mulas f amd g are said to be m-equivalent if f|-"~g and g|—f. For me€ (0,1, ECF, f€ F,

that, £ mi-implies f or f is m-implied from £ denoted by T|-"f iff Ty C T™;. Let
I C F. The set T is said to be m-implied from £ denoted by £|--T if £|-~ for any f € I'.
. say that, T amd T are m-equivalent, written £ 2 T, if £]"-T and T}|-%-E.
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Each formula f € F is said to be a multi-valued positive Boolean dependency (FV
f(e) =1fore€ Band e=(1,1,..,1). By F, we denote the set of all MVPBDs oer
R € REL(U) and u, v € R. Then (ai(u.A1, v.4y), ..., a(u.4,, v.A,)) is said to be
over U and denoted by a(u, v). We set Tp = {a(u, v) u, v € R}. Note that, for any R ¢ R,
we always have ¢ € Tr.

Definition 2.6. Let R be a relation over U and f € F,. We say that the relation R n-satisties
MVPBD f, denoted by B™(f), if T  T™,. For £ C Fy, the relation R is said to mmuzya..
set T of MVPBDs, written R™(Z) if R™(f) for any f € E This is equivalent to Tr = T™y. }

R € REL(U) and R does not m-satisfy f, then we written ~R(f). If R does not meatisfy 5.
wiite ~R™(E).

Definition 2.7. For m € [0, 1), £ C F, and { € F,, £| 2 { means that, for all R : REL(U)
if R™(Z) then R™(f).E| 2, f, means that, for all R € REL(U) and R has only tw tunles. i
R™(S) then also R™ (f).

3. m-REPRESENTATION AND ARMSTRONG RELATION

Let £ C Fy. We set SAT™(E) = {R|R € REL(V) and R™(E)}. In case = {/} instead of
SAT™({f}) we write SAT™ (f). For R € REL(U), we define LD™(R) = {f|f € Fy, B*(f), R€
REL(U)}. When R = {R}, we use LD™(R) instead of LD™(R). Thus LD™(R)= {fIf €
Fy, R™(f)}. It is obvious that LD™(R) = ] LD™(R).

ReR

Definition 8.1. Let £ C F,, f € F, and R be a relation over U. We define £,,* = {{|Z| 2 f}.
We say that the relation R m-represents L if LD™(R) 2 T,,%, R exactly m-reprsents I if
LD™(R) = Ep*. If R exactly m-represents I then R is said to be an m -~ Armstrorg elation for
.

Theorem 8.1. (Equivalence Theorem) (8]. Let m€ (0, 1], £ C F,, f € F,,, then the folowing are
equivalent

122 2.%Bf 3 EZg

From Definition 3.1 and Equivalence Theorem, it is not hard for us to get the tw following
corollaries,

Corollary 8.1. Let £, T C F,, and let m € [0, 1]. The following are equivalent
£Zr
. £}°T and I|2-E
. E|Z2land 2%
Zpt =Tw*
Ty = Tmp
Corollary 8.2. Let me [0, 1), £ C F,. The following hold
;> Magt o o
2. T™y, + = T™g

os W e

Lemma 8.1. Let m € [0, 1] and R be a nonempty relation over U. Then there awais sezssts a
MVPBD f such that T™; = Tg.

Proof. Suppose k is the smallest integer in K such that k > m. It is clear that ¢ ¢ T2 Taking
Theorem 2.1 into account we can construct a formula f, which satisfies f(e) = 1aad for any
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Tr with z # ¢ then f(z) = k, in case z € B\ Tp then f(z) = 0. It is not hard to verify that
atisfies the demands of the lemma. The proof is complete.

rollary 8.8. Let I, T C F,,, R, S C REL(U) and let f € F,. The following are valid:
1. SAT™(E) = SAT™(T) iff T"s = T™r

IfSCT then SAT™ (L) 2 SAT™(T)

. SAT™(SUT) = SAT™ (L) 1 SAT™(T)

. SAT™(ZNT) D SAT™(S) U SAT™(T)

. T C LD™(SAT™(E))

6. IfRCS then LD™(R) 2 LD™(S)

7.R C SAT™(LD™(R))

8 LD™(RUS) = LD™(R) n LD™(S)

9. LD™(RNS) 2 LD™(R) U LD™(S)

10. SAT™(LD™(SAT™())) = SAT™(E)

11. LD™(SAT™(LD™(R))) = LD"™(R)

T e e

oof. It is not hard to verify properties 1, 2, 3, 4.

5. To prove this property, it is enough for us to show that if f € LD™ (S AT™(Z)) then f ¢ .
t R= SAT™(Z). Because if f ¢ LD"(SAT™ (L)) then f ¢ LD™(R) so there is R € R such
at ~R™(f), te. f¢E.

6. Let. f € LD™(S), then for any S € S we have S™(f), it mean that T, C T™ . Since RC S
en for amy R € R, we have Tp C T™, it means R™(f).

7. Set. & = LD™ (R), suppose R ¢ SAT™(LD™(R)) then R ¢ SAT™ (L) therefore there exist
€ &= LD"™(R) such that ~R™ (f). This proves that R € R. Property 7. has been proved.

The other parts of the corollary are also easy to verify. The proof is completed.
heorem 8.2. Let ¥ be the set of MVPBDs over U, and let R be a nonempty relation over U.

rm € [0, 1], then a ary and suffi dition for a relation R be an m - Armstrong
lation for the set & of MVPBDs is Tp = T"y.

roof.

1. Sufficient condition. Suppose we have Ty = T™y, then Tp € T™g therefore R™(Z).
ecause of Ty C T™y and taking Corollary 3.2 into account we obtain R™(E,,*). Hence £,,* C
D™(R) (1). On the cther hand, for any f € LD™ (R) then R™(f), which means that Tp C T™ ;.
he hypothesis Tp, = T™y implies T™5 C T, so £|" f. Based on Equivalence Theorem 3.1.
ecan get f € E,,* and so LD™(R) C £,," (2). The assertions (1) and (2) complete the proof
r the sufficient condition of the theorem. '

2. Necessary condition. Let R be a m-Armstrong relation for the set £ of MVPBDs. This
eans that LD™(R) = £,,*. We let I = LD™(R). It is easy to see that I',,* =T = Z,,*.
y Corolllary 3.2 we have ™5 = T™r. From R™(LD™(R)) we obtain T C T™r, therefore
r € T™s (3). Now we have to show that 7™y C Tg. Indeed, using Lemma 3.1, we can
mstruct a MVPBD f such that 7™ = Tr. From that equality we get Tr € T™ and therefore
€ LD™(R) = S,,*. Thus we have proved £| = f. Using Equivalence Theorem 3.1 we infer
|1 (4). For any z € T™g from (4) we obtain z € T™; = Tg. Hence T™g C T (). From (3)
nd (5) we complete the proof of the necessary condition of the theorem.

‘heorem 3.3. For m€ (0, 1], £ C F,,, then m - Armstrong relation for T does not always ezist.

'roof. Wee shall show that by an anti-example. Suppose that U is a set of two attributes A and
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B having correspondingly their domains to be dom(4) = {a1, a3, a3}, dom(A) = (¥} E3{80
Mappings a;, 1< 5 < 2 are defined as follows:
ayfai, @) = aq(bi, b)) =1, 1<i<3,

2
ai(ay, az) = ay(az, a1) =

5 iler, @) = aifas, @) =0,

3
ai(az as) = auay, a2) = o, aalby, ba) = a(ba, bi) =0,

1 3
az(by, b3) = aabs, by) = i (b2, bs) = aa(bs, ba) = i

Remark 1:
1. If a; # a; then ay(a;, a;) # 1.
2. ag(bi, bj) = 3 iff (bi, b;) = (ba, bs) or (b;, b) = (ba, ba).

Suppose T C B, T = {(1, 1), (2, 1), (3, 3)}. By applying Lemma 2.2 there exista formula
such that T™; = T. Setting £ = {f} we get Tz =T.

Suppose P is a relation containing all tuples over {4, B} . Let Q be subrelation of P such tha
To C T™g.

Remark 2:
B.
2. From Remark 1 we see that for any u € Q, then u.B = b3 or u.B = b3.

1. There are not two tuples u, v in the relation Q such that u.B

3. Paying attention to Remark 2.1, 2.2 we conclude that the number of tuplesin Q is no
greater than two therefore we can not find any subrelation of P such that Tg = T"™: The prod
is complete.
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' CHi I KHOA HOC DHQGHN, KHTN, t.XI, n°4, 1095

VE QUAN HE ARMSTRONG TRONG LOP
CAC PHU THUOC LOGIC DUONG DA TRI

Vi Ngoc Loan
Dai hoc Khoa hoc ty nhién - DHQGHN

Tréna co s& trinh bay vé mét ki€u phu thugc Boole dwong da tri ma né 13 t3ng quéit héa cda
58 cédc 1érp phu thudc 16gic nhwr phy thude cin bing, phu thuge Boole dwomg t3ng quét ... bai
d phhét trién mot s3 két qud vE cdc quan hé Armstrong ma ching di dwgc d& cip dén trong
phuy tthuge Boole dwong tdng quét [6]. Ngodi viec dwa ra mgt s8 két qud v& vige bidu difn cic
phu tthudc trong cic 16p phu thuéc Boole dwong da tri, két qué chinh trong bii bdo 12 dwa ra
tiéu chudn cin va dd d€ cho mét quan hé R 13 quan hé m-Armstrong cho mét tip cdc phu
¢ Booole dwong da tri cho truée. Trén cor s& dé bai bdo cing khing dinh ring véi mét tip T
phu tthude Boole dwong da tri vi véi mot tham s8 m thi néi chung quan h§ Armstrong cho né
ng phhdi léc ndo ciing t3n tai. Mgt s5 khing dinh twong dwong d8 cip trong céc hé qud 3.1,
ciing 12 c6 loi khi xem xét dén bai todn vién ciing nhw cic quan hé m-Armstrong trong 16p
phu tthudic Boole dwong da tri.
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