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1. INTRODUCTION

The problem of whether the gravitational waves exist in nature has not yet bee ‘solved.
At the present time, there are no any convincing proof of their experimental observatn. The
gravitational waves in the linear approximation have been considered by Einstein (1] ancthen by
a lot of researchers [2]. Apart from this, the exact solution of the Einstein equation in th form of
a nonlinear plane waves were obtained by Bondi, Robinson, Trautman (see e.g. [3]). Soit seems
that there are no theorical obj to their exi However, there is a problemwith the
definition of energy of linear and nonlinear gravitational wave, connected with the generalproblem
of energy and time in gravitational theory [2].

In the Einstein theory with the general coordinate group, the ¢ pton of the
energy can be defined in the Dirac- Arnowitt- Deser - Misner (ADM) metric [4-9]. Onl for this
metric one can apply the Hamiltonian description and determine the constraints. In th present
paper, to determine the dy ical content of gravitational waves and their energy we xplicitly
resolve these constraints and calculate the reduced action.

The application of this approach to the relativistic particle model is quite simple. The'esolving
of the mass-shell constraints for a relativistic particle

1
¥=5 (= +pl+m?) =0, (1.1)
leads to the notion of particle energy
po=tw, w=\p?+m?, (12)

and resolution of the equation of motion of the corresponding coordinate gives us the denition of
the observable time. We shall deal with this analogy and show that the resolution of castraints
and corresponding equations of gravity leads to the notion of “spectral energy” of the typ of {1.2)
and spectral time as a variable canonically conjugated to this energy.

We are convinced that the reduced action for the BRT wave contains only the kirtic term
and is dynamically equivalent to the Misner anisotropic excitation, In the reduced tieory the
BRT “graviton” represents a plane wave in metric’s space and cannot be treated as a paticle like
exicitation, in contrast with QED “photon”’ solution which is the oscillator excitation irthe field
space.

The present paper is organized as follows. In section 2, we discuss the exact soluton of the
Einstein solution of the type of nonlinear plane wave [3]. In section 3, using the method Jaugeless
reduction” [10-14] we calculate the reduced action and spectral Hamiltonian for the ystem of
graviton and electromagnetic fields. The later is used as a test of correct reduction. In:ection 4,
we compare the dynamics of a “photon” excitation with a nonlinear graviton one.
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2. NONLINEAR PLANE WAVE
ILet us consider the Einstein equation
GE = g~ %6{,‘“’)!:0 1)

for thhe Bondi~ Robinson - Trautman nonlinear plane wave (2, 3] propagating in the direction z° = z
with the metric

(ds)? = (dt)? — (d2)? — x*hapdztdz® (' =z, 2% =y), (2.2)
20 (] 4 2
’ua=(‘ (:”’) ,_’w),deth=1,\/:3=x°, (23)

wherce x, @, ~ are the functions depending on t + z = t{*),

"The Einstein equations G) = 0, GJ = 0 which are the constraints have the form

0
45 =0
X

4(K)’+(Dnﬂ7)+4 o' =0 )
X Yz b d )
wherce Hpnoe is the photon - like energy
Ko = 5 [(B1)? + (Dea] +2(67 + ) , @5)
and tthe following motions for derivatives are used
Dy=q+2¢7, Diov=++2¢'", (2.6)
af=t, duf =1 @7

TThe equations of motion (2.1) for the metric X, @, 7 satisfying the
(2.4) : are identically fulfilled due to their dependence only on the combination t+z = t(+) [2,3]. We
wouldd like to mote that this shtement is true only for the exact theory. In the linear aproximation,
(x = 1) these ions are independent, and the int (2.4) transforms to the condition of
vanishhing of the photon - like energy

Hphot =0 .

S30, we face the following dilemma: we have the linear gravitational wave with zero energy, or
the nconlinear one with equations of motion as constraints.

TThe question arises: What is the energy of the nonlinear plane waves? To determine this
energyy we use the method of reduction of gravity based on the explicit resolution of the constraints
[10,111].

3. REDUCTION OF EINSTEIN'S GRAVITY

1. "The Hamiltonian form

TThe method of gaugeless reduction [10 - 14] is useful to determine the spectrum of excitations
in QEED and relativistic quantum mechanics. It has been shown that after the reduction both
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the theories contain only the observable gauge invariant variables (two transverse pho
the “time-reparamtrisation” invariant physical coordinates and spectral time respectiwel
method has been applyed to gravity in refs [14]. Here, we repeat this method to comare
photon and graviton excitations. We start with the conventional scalar curvature action icluding
the electromagnetic field

Wio, )= - [ XV 9R(0) + § Ea P). (3

It is well known that the Einstein equations

W

Sgou

are the Lagrange i In the Hamiltoni: PP h they correspond to the secondry:con-
straints, and the reduction consists in their explicit resolving with respect to the definite mmentum
and coordinate.

The Hamiltonian approach with the instant form of dynamics enforces us to assumehat the
space time manifold M can be represepted as M = R x I, where £ is the three dimensionasurface.
The space time foliation is realized by introducing the so called embedding variables X, t) [15]
which are maps from a point z of the surface L to a space time point X of the manifolc M, and
t labels the leaves of the foliation. This foliation leads to the well known Dirac - Arnowit«Deser -
Misner (Dirac- ADM) metric (4]

ds? = N?(dt)? — a?hie(da’ + N'dz®)(dz* + N*dz), 3.2

where N is the lapse function, N* is the shift vector, a is the “scale space” componert ¢ metric,
hik is the “graviton component” with determinant equal to unity:

V=g=Nd®, det(hy)=1, a=expp. (3.3)

The Einstein- Hilbert action (3.1) in terms of this metric possesses the manifes smmetry
under the following group of transformations [5]

t—t =t(t), (5.4)

0o
=gt =2 (1, 2!, 27, ).

Let us rewrite the action (3.1) in terms of the embeddings. The scalar curvature can be leomposed
into three terms: the “kinetic” K, the three dimensional curvature (*)R, and the “sufac” E:

WR= K+ R4z, (3.5)

K (3.6)

GIR = 5 (W00 + 1 dundtu) + S R(M), )
. 3k ¥ a’ﬁ 5

B = 5 Bl M) - 38, (5] i(3:8)
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where we introduce the notation

8op = Bop - Bu(pN*) (39)
. 1 1
B=ii- gz (e N) = r dola?), (3.10)
° it 2 )
B = b (b = ViNe = Vil + 3k 8iNY) (3.11)
R(k) = % B;h*1(3°h'k — 20'h) + OB AM . (8.12)

The canonical momenta conjugated to u, h, and A are the following:

(3.13)
(3.14)
aL e . Q
Pl = 520 = (Ax = 0edo — N'Fi) = % Ay. (3.15)
dere 3;h*, = h*8hy, Ny = hN' and V), is a covariant derivative in metric .
In terms of variables:
=(h A), Py =(Pay Pla)) s 8 Py
he action (3.1) has the form:
W=/d’zdt S P3| +Ruwb-NHe -S| .
w=(h.4)
{ere we keep the surface term (3.8) taking into account (3.13)
T P, (ed*N)
o 3 = (#4)
Sp=Na® o =gyl T 2] (3.17)
0 with the ional ADM h where this term is omitted; Ng is the Einstein
nergy density
¥ =a’[—ﬁﬂz“—) Tu(h, 4)] 3.18
. S me et Al (8.18)

there ‘To((h, A) = T%(h) + T°(A) is the zero-sero component of the energy momentum tensor

4x?P?
190y = £ 4 B oy Limr s By (3.19)
*he acitiom (3.16) can be represented in a more detailed form as
W= j/(dsm [( > F(,,¢) + Pluyis + AcBkE* = NX + N* Py — P“" —aS*| . (3.20)
=(h. 4)
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-In Eq. (3.20) the surface term is
s*=-—-a N+2P} ,,N‘--N Py + AcE*, (3.21)
and Ao, N, N* are considered as Lagrange factors for constraints
N=0, B=0, &Py =0, (3.22)

where P, is the Einstein momentum density:

P= "?a (P“") + Na®T%%(h, 4), (3.23)
TO%(h, A) = T'x(h) + T%(4), (3.24)
TOu(h) = (za,P(‘,,,,‘ = OkhiFly] ) T'h(4) = 35 PuE'. (3.25)

To complete, we should hke to note that the expression

T*y(h, 4) = T*(h) + T*4(4), (3.26)
4x?Pl)  R(h
k (h) = () )k (4) =

TR = =3 o B8 Th(4) = ~T%(4) (3.27)
is the spatial trace of the total energy tensor for i (h) and photons (.) in the

Einstein equation 4% = 0. On the constraints (3.22) this equation has the form (see also[14])
55= Na®[T%(h, 4)+ '-'ﬂ;‘—i)] L (T = T0% + T). (3.28)
The action (3.20) describes the lized Hamiltonian dy ics for (u, hat, Ax) and Py, Py,

P(a) with constraints (3.22).

8.2. Reduction of phase space

‘We shall act in direct analogy with the relativistic particle case and QED. As we see,in these
cases the resolution of constraints leads to the construction of gauge invariant va.nables (QID) and
to the observable time as a global invariant of the rep ion group (relativistic prticle).
The same gauge invariant variables for gravity have been constructed in the framewor! of the
cosmological perturbation theory, with the choice of the conformal time [16]. Here, wediscuss
the d; ical aspect of this 1 d connected with the construction of the “pectral

- Hamiltonian” and “spectral time”, by the resolution of the “energy” constraint ¥z = 0 withrespect
to the space-scale momentum Py, by analogy with the “instant form” of dynamics of rehtivistic
particle. We should like to note that there is possibility top chose another form of dynamis which

ponds to lution of the energy int with respect to different momentum. Ard these
forms can be nonequivalent.

The explicit resolution of the constraint ¥z = 0 allows us to represent Pj,) as a fuictional
from the physical variables p, P(,, 4. This constraint has two solutions

P =%, F= Y2 (m0,(h, 41 (39)
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Che quuantity in the square root in eq.(3.20) is not positive definite. In the classical case the
ositive values of Ty(h, A) restrict the admissible regions for the physical variables h, A and
heir rmomenta. While in quantum theory, the negative values of T%,(h, A) can lead to the physical
shenormena of the type of tunnel effect.

Atccording to the reduction p: let us itude the solution (3.29) to the initial action

3.16) and consider two terms me — Sg. On the constraints-shell (3.22) the total derivative in
5z (3..17) can be represented as
300; T uA;HL [ St

o =2 2 5‘.;” Su(tio)+ ;%é.,(aplw,)],

a(a u) a(a «a)
(3.30)
Jne czan see that (3.30) in the action (3.16) represents the sum of the equations of motion for the

telds yu, @, Pgy:

———30(3ip) +

trT(:, A)] [BFéW”

S = Na*[T (h, A)+ wéu(ap.,,)] (3.31)

3(3ip)

ike thoe identity & = 35, 3% in eq. (1.1) represents the sum of the equations of motion for a
elativvistic particle. N denotes the lapse function N on the constraint-shell Xz = 0:

623 o V3
“he iddentity (3.34) means that the classical dynamics of the metric (3.13), (3.28), (3.29) defines
he dyynamics of the “matter” field (in our case - gravitons and photons). This fact was discovered
y V. 1Fock {17} and then rediscovered by a number of authors.

32) and eq. (3.29) in the form

(3.32)

Byly using eq. (3

= Na®2T"(h, 4), (3.33)
e catin eagily get the result for the reduced action (3.16) on the constraint-shell ¥z = 0

Wt = /d“zd: L mex Fé..w S NEYOE én(P,,,)]zN)(p}, (3.34)

2a(a p) zaP

here PZ b
t h K

'T( A) [T" o(A) + ——'] (3.35)
ote thhat lapse function (3.32) and Hamiltonian (1,35) have the analogy with the mass-shell energy
nd lappse function for a relativistic particle (1.1),(1.2):

b= .e(r'.,(h, A) -

Np= (4 m?), N=

(3.36)

/e cann see that the reduced action on the solution of classical equation leads to the local part of
ie TolImam energy momentum tensor [18] for “matter” field (M) including gravitons (14|

Tizotmanyy (b M) =T/ (h, M) - §

T M) -
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Expressions (3.34), (3.35) can be considered as the basis for the construction of the H: i
scheme in terms of gauge invariant variables. In the flat space-time limit the reduced Hamltonian
(3.35) coincides with the one for electrodynamics. It is achieved b y taking into account bth the

terms P(,,,p — Sg, in the contrast with the conventional ADM scheme (e.g. see [7]), were the
total derivative (3.17) in the initial Einstein action (3.1) is neflected and the term 4P, is not
considered as the part of the Hamiltonian.

4. DYNAMICAL CONTENT OF NONLINEAR PLANE WAVE

The nonlinear plane wave metric (2.1) and the above considered general ADM metic (3.3)
ire connected in the following way

By (“"6“3 a92> L x*=a®, N =0, N=1. (41)

Let us introduce the new variable
)
) . o .
B )[ e+ 2R 1+ 2
o
to diagonalize the kinetic terms (3.6)
DY ¢ A LINPYTING B
K= 4(X) 2457 (4.3)

In terms of momenta Py, P(y), for metric field p, 7 the constraint ¥ = 0 aid educed

action (3.34) became
1 p2 2
AR i B

X
Hp=0=4% 4.4
i X X e

P2+ d}ﬂ) 2] ] (45)

: L1
Wit =ve / fﬂ‘“[ﬂww + P F 5( e,
The reduced equations of motion are the conservation law of momenta
P,=0, P, =0.

The solution of these equations and constraint (4.4) is

/P2 +4p2it) (4.6)

So, instead of (4.5) we get

whed = V../d,m Pyé + Pyt & —‘/P +4P2 :m] (4.7)

Or passing to the time logtt = 2logy = 3y, p = Ina (a® = x?) we get the action of heMisner
anisotropic excitations [19]

. B v
whed = V"/d¢l+'[17‘w|<ﬁ+ Puyi 7 5 3/P2 +4r2], (4.8)
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wherce 4 plays the role of spectral time and 3,/P2 + 4P? of spectral energy, and P(,) and P, are
consttaints. The function p and 7 in metric (2.1) have the form

8 B

p=F3 ey, (4.9)
\/P2+4P2
P,

7 =F4 PJ (1-¢7%%). (4.10)
e

INow we can pass to quantum theory. One can define the spectral decomposition of the
baabili plitude to find our system in the configuration p, 7 at the spectral time
", |( zats the spectral time pu = 0, it was in the configuration ¢ =y =0

$le, 1 H) =/‘1P(7idp(v)('4:;= W+ Alp) eV,
wheree E‘W(d:) are the actions on the classical trajectories

3
Wiy = P+ Poyv ¥ VPe+Fu

A*) . aind A=) are the creation and annihilati of the Misner

TThe considered case points out the physical equivalence of the nonlinear plane wave (3] and
the MVisner amisotropic excitation [19), and testifies to the fact that a graviton does not disturb
the sppaice metric, as its action contains only the kinetic term, and it looks like a plane wave in the
metridc ‘space.

DISCUSSION

TTo» understand the difference between photon and graviton, we have considered the nonlinear _

sravittattional wave in the Dirac- ADM metric. We got the ponding reduced Hamill

which" sgeneralizes the Tolman Hamiltonian [18]. T olman has shown [18] that this Hamiltoniar
eads { to experimental observable difference of the behaviour of a photon and massive particle in
he staattic gravitational field, and our lisation of this Hamiltonian leads to the conventional
lescrijipttion of the photon as oscillator - like excitations. The nontrivial peculiarity of this reduced
{amiltltconian is the absence of the potential energy for a graviton. This means that a graviton
epreseemts the plane wave in the metric space. The question arises if how we can observe this
‘gravititcon”,
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TAP CHi KHOA HOC DHQGHN, KHTN, t XI, n°4, 1995

PHOTON VA GRAVITON: SU KHAC NHAU NHU THE NAO

Nguyén Xuin Han
Dai hoe Khoa hoc ty nhién ~ DHQGHN

Trén co s i gidi chinh x4c cic phwomg trinh lién két cda trudmg hdp din phung phép
rit gon trwdmg di dwoc dung d€ phén tich bin chdt dong lyc cda séng phing phi tayin Bondi-
Robinson- Trautman. O diy da ching minh ring tic dung rit gon (téc dung dwa trin Wi gidi
cda cic phuong trinh lién két) d8i véi song BRT chi chifa s8 hang déng ning vh trng dwong
mat cich ddng lrc véi kich thich di huéng Misner. Nhur vy, trong Iy thuydt lrgng W ‘graviton”
BRT bidu hién 1a séng phing trong khong gian metric va khong thé luin gii bing hat fiéng nhu
kich thich. Dfu nay khic véi dién déng luc hoc luomg t 15i gidi “photon” 13 kich thichdao dang
ti trong khong gian trudmg.
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