Original Article

Palladium(II) Complex with Tridentate Ligand Containing Pyrenyl Core

Nguyen Minh Hai¹*, Tran Thi Tam Thu¹, Dinh Thi Thao²

¹Faculty of Chemistry, VNU University of Science, 19 Le Thanh Tong, Hanoi, Vietnam
²Department of Chemistry, Faculty of Science, Army Academy 1, Co Dong, Son Tay, Hanoi, Vietnam

Received 15 July 2019
Revised 28 July 2019; Accepted 29 July 2019

Abstract: A series of ligands containing pyrenyl core which are PyEt1, PyEt2, and PyEt3 have been successfully synthesized. PyEt2, a bidentate ligand and PyEt3, a tridentate ligand were used to prepare Pd(II) complexes by reactions with PdCl₂(CH₃CN)₂. The titled compounds displayed intriguing geometries around the central palladium atoms. ¹H-NMR results showed that palladium in Pd-PyEt3 adopts a five-coordinate configuration.

Keywords: Pyrene, palladium, five coordination.

1. Introduction

Polycyclic aromatic hydrocarbons (PAH) are a class of compounds that possess extended π conjugated systems. This unique structural property renders PAHs strong absorption and emission in visible region. However, PAH-based research is often limited by their low solubility in common organic solvents. Functionalization of pyrene by appending solubilizing groups that contain donor atoms like nitrogen proved to be an effective strategy to overcome its poor solubility and open up its coordination chemistry [1-4].

* Corresponding author.
Email address: minhhai.nguyen@hus.edu.vn
https://doi.org/10.25073/2588-1140/vnunst.4919
results show that PyEt3 can bind to the Pd(II) ion to form an unusual five-coordinate complex.

2. Experimental

2.1. Materials and instruments

All the chemical reagents used in the experiments were obtained from commercial sources as guaranteed-grade reagents and used without further purification.

The FT-IR spectra of the complexes were measured on a FT-IR 8700 infrared spectrophotometer (4000-4000cm⁻¹) in KBr pellets. The ¹H-NMR spectra were recorded on a Bruker-500MHz spectrometer in CDCl₃ solution at 300K.

2.2. Synthesis of PyEt1

To a 10mL ethanolic solution of pyrene-1-carbaldehyde (0.100g, 0.435mmol) was added N,N-diethylethylenediamine (0.166g, 1.426mmol). The resulting mixture was stirred overnight, then dried and refluxed for 5h. The solvent was reduced to dryness and then a large amount of water was used for washing to produce a yellow semi-solid. Yield: 0.12g (85%).

Data for PyEt1: IR: υmax/cm⁻¹ = 3606 (w), 2964 (w), 1624 (s), 1597 (m), 1449 (s), 1201 (s), 1066 (m), 713 (m); ¹H NMR (CDCl₃, δ ppm): 9.33 (s, 1H, H₆, imine), 8.91 (d, J = 9 Hz, 1H, H₁₀, pyrenyl), 8.52 (d, J = 8.0Hz, 1H, H₂, pyrenyl), 8.23-8.02 (m, 7H, H₃-₅,₇,₈,₉, pyrenyl), 3.95 (t, J = 7.0Hz, 2H, H₈, CH₂), 2.94 (t, J = 7.0Hz, 2H, H₈, CH₂), 2.69 (q, J = 7.0 Hz, 4H, H₆, CH₂), 1.11 (t, J = 7.0Hz, 6H, H₆, CH₂).

2.3. Synthesis of PyEt2

To a yellow solution of PyEt1 (0.115g, 0.360mmol) in CH₂Cl₂/methanol (10/5mL) was added NaBH₄ (0.760g, 2.000mmol). The mixture was stirred overnight, then dried and washed with water to give a pale yellow product. Yield: 0.10g (83%).

Data for PyEt2: IR: υmax/cm⁻¹ = 3294 (w), 1600 (s), 1587 (s), 1454 (s), 1382 (m), 1066 (m), 846 (s), 756 (s), 746 (s), 713 (s), 696 (s), 623 (s), 569 (s), 450 (s), 2964 (w), 1624 (s), 1597 (m), 1449 (m), 1201 (s), 1176 (s), 1143 (s), 844 (s), 713 (m); ¹H NMR (CDCl₃, δ ppm): 8.37 (d, J = 9Hz, 1H, H₁₀, pyrenyl), 8.18-7.97 (m, 8H, H₂,₃,₄,₅,₆,₇,₈,₉, pyrenyl), 4.50 (s, 2H, H₆, CH₂), 2.85 (t, J = 6.0Hz, 2H, H₈, CH₂), 2.62 (t, J = 6.0Hz, 2H, H₈, CH₂), 2.49 (q, J = 7.0Hz, 4H, H₆, CH₂), 0.99 (t, J = 7.0Hz, 6H, H₆, CH₂).

2.4. Synthesis of PyEt3

0.100g (0.304mmol) of PyEt2 was dissolved in 10mL of CH₃CN in a 100mL round bottom flask. To the resulting solution was added 0.050g (0.304mmol) of 2-chloromethyl) pyridine hydrochloride and 1.000g of K₂CO₃, 1.5H₂O. The mixture was refluxed for 72h in the absence of light. The solvent was then removed by rotary evaporation. Extraction with CH₂Cl₂ yielded a brownish solid. Yield: 0.090g (71%).

Data for PyEt3: IR: υmax/cm⁻¹ = 3039 (w), 1649 (s), 1587 (s), 1431 (s), 1373 (m), 1066 (m), 844 (s), 756 (s), 746 (s), 713 (s), 696 (s), 623 (s), 569 (s), 450 (s), 2964 (w), 1624 (s), 1597 (m), 1449 (m), 1201 (s), 1176 (s), 1143 (s), 844 (s), 713 (m); ¹H NMR (CDCl₃, δ ppm): 8.59 (d, J = 9Hz, 1H, H₁₀, pyrenyl), 8.47 (dd, J = 6Hz, 1H, H₈, pyridine), 7.89-7.98 (m, 8H, H₂,₃,₄,₅,₆,₇,₈,₉, pyrenyl), 7.55 (dt, J = 6Hz, 1H, H₆, pyridine), 7.43 (d, J = 6Hz, 1H, H₄, pyridine), 7.07 (dt, J = 6Hz, 1H, H₆, pyridine), 4.39 (s, 2H, H₆, CH₂), 3.87 (s, 2H, H₈, CH₂), 2.78 (t, J = 6.0Hz, 2H, H₈, CH₂), 2.72 (t, J = 6.0Hz, 2H, H₈, CH₂), 2.46 (q, J = 7.0Hz, 4H, H₆, CH₂), 0.93 (t, J = 7.0Hz, 6H, H₆, CH₂).
2.5. Synthesis of Pd-PyEt2

To a CH2Cl2 solution of PyEt2 (0.010g, 0.030mmol) was added PdCl2(CH3CN)2, (0.008g, 0.031mmol). A clear yellowish solution was obtained after 4h of stirring at room temperature. The solvent was reduced and excess hexane was added to afford the titled product. Yield: 0.011g (72%).

Data for Pd-PyEt2: IR: \(\nu_{\text{max}}/\text{cm}^{-1} = 3041\) (w), 1641 (s), 1597 (s), 1434 (s), 1383 (m), 1069 (m), 843 (s), 759 (s).

\[^1H\text{ NMR (CDCl}_3, \delta \text{ ppm):} \]
8.67 (d, 1H, H10, pyrenyl), 8.38-8.11 (m, 8H, H2,3,4,5,6,7,8,9, pyrenyl), 6.07 (m, 2H, Hf, CH2), 5.34 (d, 2H, Ha, CH2), 4.50 (t, 2H, Hb, CH2), 2.81 (q, 2H, Hc1, CH2), 2.61 (q, 2H, Hc2, CH2), 1.49 (t, 3H, Hd1, CH3), 1.49 (t, 3H, Hd2, CH3).

2.6. Synthesis of Pd-PyEt3

The compounds were prepared following the procedures for Pd-PyEt2, except that PyEt3 was used instead of PyEt2. Yield: 77%.

Data for Pd-PyEt3: IR: \(\nu_{\text{max}}/\text{cm}^{-1} = 3032\) (w), 1651 (s), 1590 (s), 1434 (s), 1376 (m), 1069 (m), 847 (s), 756 (s).

\[^1H\text{ NMR (CDCl}_3, \delta \text{ ppm):} \]
9.29 (d, 1H, H10, pyrenyl), 8.88-7.83 (m, 8H, H2,3,4,5,6,7,8,9, pyrenyl), 6.49 (d, 1H, Hq, pyridine), 6.46 (t, 1H, Hp, pyridine), 5.94 (t, 1H, Hn, pyridine), 5.42 (m, 2H, Hl,2, CH2), 5.12 (m, 2H, Hg1,g2, CH2), 4.55 (d, 1H, Ht, CH2), 4.43 (t, 1H, Ht2, CH2), 3.91 (m, 1H, Hc1, CH2), 3.70 (t, 1H, Hb1, CH2), 3.44 (m, 1H, Hc1,v, CH2), 3.10 (d, 1H, Hn2, CH2), 3.02 (m, 1H, Hc2,v, CH2), 2.56 (m, 1H, Hg1,v, CH2), 1.66 (t, 3H, Hd1, CH3), 1.48 (t, 3H, Hd2, CH3).

3. Results and discussion

3.1. Syntheses

The ligand PyEt1 was synthesized by a condensation reaction between pyrene-1-carbaldehyde and N,N-diethylethelenediamine in good yields. Reduction of imine fragment in PyEt1 by sodium borohydride produced PyEt2 with robust C-N single bonds. A picolyl part was introduced by the reflux of PyEt2 in acetonitrile over 72h. The three ligands are pale yellow semisolids and very well-soluble in common organic solvents like CH2Cl2, CHCl3, acetone, THF....
The ligands and the complexes were characterized by infrared spectroscopy. As the results indicated, the strong band at 1624 cm$^{-1}$ confirmed the formation of PyEt1. The disappearance of the band in PyEt2 implied that the C=N bond was completely reduced. The infrared spectra of PyEt3 and the two complexes Pd-PyEt2 and Pd-PyEt3 showed characteristic bands of the aromatic moieties.

Scheme 2. Synthetic scheme of the complexes.

3.2. Characterization of complexes by 1H-NMR

The distinct differences between the 1H-NMR spectrum of PyEt2 and that of Pd-PyEt2 (Figure 2) are noted. The signals responsible for methylene groups of pyrenyl rings (6.07 ppm) and ethylenediamine fragments (5.34 ppm and 4.50 ppm) in the complex are downfield shifted, compared to those of the free ligand. This evidence confirms the presence of metal atom in connection with two nitrogen donor atoms. The patterns of these signals also change significantly due to the rigidity of the chelate ring formed upon the complexation. The pyrenyl methylene protons give no longer a singlet but a complex multiplet due to spin coupling with its surrounding N-H and N-CH$_2$ protons. More interestingly, the signals for ethylenediamine protons which are assigned for the two triplets in PyEt2, are a doublet and a triplet in Pd-PyEt2. This is reasonable in light of the fact that the four protons are now fixed and forms different dihedral angles with carbon atoms which in turn give rise to different coupling constant values. Due to effective inversion of substituents around nitrogen atom, the two ethyl groups in PyEt2 gave a set of signals including a triplet and a quartet. However, because of the coordination of palladium atom in Pd-PyEt2, the inversion is now firmly locked, making two ethyl groups chemically inequivalent. This is evidenced by the appearance of two sets of triplet and quartet in the upfield region.

The 1H-NMR spectrum of palladium complex of PyEt3 (Figure 3) is much more complicated than that of PyEt3. Upon complexation, the H$_{10}$ signal of pyrenyl ring is downfield shifted (9.29 ppm) while the pyridyl signals are upfield shifted (7.60 – 5.94 ppm). This result implies the engagement of pyridyl nitrogen atom in coordination sphere of palladium. The two protons of methylene group attached to pyrenyl and pyridyl rings are no longer equivalent, giving rise to doublet signals (5.42 ppm and 5.12 ppm) due to spin coupling between them. Similar to the pattern observed in Pd-PyEt2, the four protons of ethylenediamine moiety are manifested in the spectrum as two doublets (4.55 ppm and 3.10 ppm) and two triplets (4.43 ppm and 3.70 ppm). This reveals a very crowded coordination sphere, making further signal splitting to each separate proton. Another piece of evidence confirms that the connection of pyridyl nitrogen to palladium is
the four multiplets corresponding to four methylene protons of ethyl groups. This may suggest a square pyramidal configuration of the complex as pyridyl ring could be in closer approach to ethyl groups.

![Figure 2](image)

Figure 2. 1H NMR spectrum of Pd-PyEt3 in CDCl3.

4. Conclusion

In summary, a series of ligand PyEt1, PyEt2, and PyEt3 which contain pyrenyl core have been synthesized and characterized. The pre-organized three nitrogen donor atoms in PyEt3 took part in unusual five-coordinate mode with palladium(II) which was revealed by 1H-NMR spectroscopic results. Ongoing studies about luminescent properties of this complex are presently underway in our laboratories.

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.03-2014.49.

References

