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Abstract: In this paper, a finite element method (FEM) and a new third-order shear deformation 

plate theory are proposed to investigate a static bending model of auxetic plates with negative 

Poisson’s ratio. The three – layer sandwich plate is consisted of auxetic honeycombs core layer with 

negative Poisson’s ratio integrated, isotropic homogeneous materials at the top and bottom of 

surfaces. A displacement-based finite element formulation associated with a novel third-order shear 

deformation plate theory without any requirement of shear correction factors is thus developed. The 

results show the effects of geometrical parameters, boundary conditions, uniform transverse pressure 

on the static bending of auxetic plates with negative Poisson’s ratio. Numerical examples are solved, 

then compared with the published literatures to validate the feasibility and accuracy of proposed 

analysis method.  
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1. Introduction 

Auxetic materials are fascinating materials 
which, when placed under tension in one 
direction, become thicker in one or more 
perpendicular directions (Figure 1). In other 
words, an auxetic material possesses a negative 
value of Poisson’s ratio (Evans et al. [1]). 

 

Figure 1. Auxetic material [2]. 

Recently, numerous investigations on auxetic 
materials have been conducted by researchers in 
all over the world. The mechanical behaviors 
such as static bending, bucking load, dynamic 
response and vibration are studied a lot. Shariyat 
and Alipour [3] investigated bending and stress 
analysis of variable thickness FGM auxetic 
conical/cylindrical shells with general tractions 
(using first-order shear-deformation theory and 
ABAQUS finite element analysis code). The 
only published paper on stress analysis of the 
auxetic structures was due to Alipour and 
Shariyat [4] who developed analytical zigzag 
solutions with 3D elasticity corrections for 
bending and stress analysis of circular/annular 
composite sandwich plates with auxetic cores. 
Hou et al. [5] studied the bending and failure 
behaviour of polymorphic honeycomb 
topologies consisting of gradient variations of 
the horizontal rib length and cell internal across 
the surface of the cellular structures. The novel 
cores were used to manufacture sandwich beams 
subjected to three-point bending tests. Full-scale 
nonlinear Finite Element models were also 
developed to simulate the flexural and failure 
behaviour of the sandwich structures.  

Auxetic plate and shell structures under blast 
load are mainly studied in nonlinear dynamic 

response and vibration problems. The calculus, 
semi-calculus, and numerical methods are 
proposed. There are a variety of studies applied 
analytical methods including the authors Duc 
and Cong [6-10]. In [6-10], the analytical 
Reddy’s (first or third) order shear deformation 
theory with the geometrical nonlinear in von 
Karman and Airy stress functions, Galerkin and 
the fourth-order Runge-Kutta methods were 
proposed to consider cell of honeycomb core 
layer (with NPR). Specifically, the nonlinear 
dynamic response of auxetic plate was 
conducted in [6], cylinder auxetic shell (within 
and without stiffeners) was illustrated in [7,10] 
and double curved shallow auxetic shells 
(without stiffeners) were mentioned in [8, 9].  

From above literature review, in [3-5] the 

authors conducted bending and stress analysis 

auxetic structures using first-order shear strain 

theory and finite element method while in [6-

10], an analytical method and (first or higher) 

order shear deformation theory were proposed to 

study dynamic response and vibration of auxetic 

plate and shell structures.  

To the author’s best knowledge, a new third-

order shear deformation plate theory has not 

been used in any published literature yet and it is 

also the main motivation of this research work. 

It introduces static bending analysis of auxetic 

plates with negative Poisson’s ratio using FEM 

and a new third-order shear deformation plate 

theory. The results show the effects of 

geometrical parameters, boundary conditions, 

uniform transverse pressure on the static bending 

of auxetic plates with negative Poisson’s ratio.  

2. Sandwich plate with auxetic core 

Considering a sandwich plate with auxetic 
core which has three layers in which the top and 
bottom outer skins are isotropic aluminum 
materials; the central layer has honeycomb 
structure using the same aluminum material 
(Figure 2a). The bottom outer skin thickness is 

1h , internal honeycomb core material thickness 

is 2h  and top outer skin thickness is 3h , and the 

total thickness of the sandwich plate is 

1 2 3   ,h h h h  as shown in Figure 2b. 
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Figure 2. Model of sandwich plate with auxetic core.
  

The plate with the auxetic honeycomb core 

with negative Poisson’s ratio is introduced in this 

paper. Unit cells of core material discussed in the 

paper are shown in Figure 2c where l  is the 

length of the inclined cell rib, ch  is the length of 

the vertical cell rib,   is the inclined angle,   

and   define the relative cell wall length and the 

wall’s slenderness ratio, respectively, which are 

important parameters in honeycomb property.  

Formulas in reference [11] are adopted for 

calculation of honeycomb core material property. 
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 1 3/ , /h l t l   . 

where symbol “  2 ” represents core material, 

,E G  and   are Young’s moduli, shear moduli 

and mass density of the origin material.  

3. New simple third-order shear deformation 

theory of plates 

A finite element formulation based on a new 

third-order shear deformation plate theory, 

which is originally proposed by Shi in [12], for 

static bending analysis of auxetic plates is 

derived in this section. This new plate theory, in 

which the kinematic of displacements is derived 

from an elasticity formulation rather than the 

hypothesis of displacements, has shown more 

accurate than other higher-order shear 

deformation plate theories. The displacements, 
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u , v  and w  at any point of the plate are given 

by [12]. 
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(2) 

where 0u , 0v , and 0w  are respectively the 

displacements in the ,x y and z directions of a 

point on the mid-plane of a plate, while x  and 

y  denote the transverse rotations of a mid-

surface normal around the x  and y  axes, 

respectively.  

Under small strain assumptions, the strain-

displacement relations can be expressed as 

follows: 

 

 

 

 

 

0 1
2

20

3
3

0

0

0

 
 
                        

           
 
  

    
  

x

y

xy

yz

xz

z z

z

 (3) 

in which 
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Based on Hooke's law, the vectors of normal 

and shear stresses read 

          0 1 33      
k k

mD z z  

        0 22    
k k

sD z  
(5) 

with 

            
  

T
k k k k

x y xy  

         
  

T
k k k

yz xz  

 

   

   

 

11 12

12 22

66

0

0

0 0

 
 
 

  
 
 
 

k k

k kk
m

k

Q Q

D Q Q

Q

 



P.H. Cong et al. / VNU Journal of Science: Natural Sciences and Technology, Vol. 36, No. 1 (2020) 90-99 94 

 

 
55

44

0

0

 
 
 
  

k

s k

Q
D

Q

 (6) 

 
 

   
 

   

   

2 2 2
2 21 12 2

11 122 2 2 2

12 21 12 211 1


 

   

, ,
E E

Q Q  

 
 

   
   

2
2 2 22

22 66 122 2

12 211

 

 

, ,
E

Q Q G  

       2 2 2 2

5544 23 13 , ,Q G Q G  

       2 2 1 1

55 13 11 22 21
  


, ,

E
Q G Q Q  

       

 
1 1 1 1

5512 66 442 2 11


   


, .

E E
Q Q Q Q  

The normal forces, bending moments, 

higher-order moments and shear force can then 

be computed through the following relations 
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Eqs. (7) can be rewritten in matrix form 
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The deformation energy of auxetic plate has 

the form: 
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For static bending analysis, the bending 

solutions can be obtained by solving the 

following equation: 

Kd F  (10) 

where K  is the stiffness matrix, F  is force 

vector while d  stands for the unknown vector.  

4. Numerical results and discussion 

Both the simply supported and fully clamped 

boundary conditions are investigated. For the simply 

supported boundary conditions (SSSS) [13]: 
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and the fully clamped edges (CCCC) [13]: 
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4.1. Comparison with the results of the isotropic 

uniformity calculation  

We consider a simply-supported and 

clamped square plate (side 1a  ) under uniform 

transverse pressure ( 1F  ), and thickness h . 

The modulus of elasticity is taken 10,9201E   and 

the Poisson’s ratio is taken as 0.3  . The non-

dimensional transverse displacement is set as 
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where the bending stiffness D is taken as 
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The results compared with those of Ferreira 

[14] are shown in Table 1. In Ref. [14], the 

author used the theory of Mindlin plate 

considering for the Q4 element. From table 1, it 

can be seen a very small difference between 2 

studies shows the reliability of the calculation 

program.  

 

Table 1. Comparison of non-dimensional transverse displacement of a square plate, under uniform pressure-

simply-support (SSSS) and clamped (CCCC) boundary conditions 

/a h  Mesh 
SSSS CCCC 

Ref. [14] Present Ref. [14] Present 

10 

6 6  0.004245 0.004429 0.001486 0.001672 

10 10  0.004263 0.004429 0.001498 0.001673 

20 20  0.004270 0.004428 0.001503 0.001673 

30 30  0.004271 0.004428 0.001503 0.001673 

10,000 

6 6  0.004024 0.003944 0.001239 0.001101 

10 10  0.004049 0.004022 0.001255 0.001208 

20 20  0.004059 0.004055 0.001262 0.001252 

30 30  0.004060 0.004060 0.001264 0.001261 
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4.2. Static bending analysis of auxetic plate 

The 20 20  Q4 mesh  is used to mesure 

static bending analysis of auxetic plate and w  is 

the deflection at position 0.5 , 0.5 .x m y m   

To study the effect of the geometric 

parameters of the plate on the static bending of 

the auxetic sheet with a negative Poisson’s ratio, 

/ 0.5,1,2.0b a   and / 0.5,1,2.0b a   are chosen. 

There are 9 different cases of auxetic plate 

structures considering 2 types of boundary 

conditions: SSSS and CCCC. The results are 

illustrated in Table 2. Obviously, with different 

boundary conditions and the same value of /b a  

the value of deflections  w decreases as the 

ratio /h a increases (thicker plates) and vice 

versa. Whereas, in the case the same value of 

/h a , deflections’ value  w increase when 

increasing /b a  and vice versa.  

 

Table 2. Effect of the ratio  /b a  and on the deflections  w  of the auxetic plate  21 0.646756    

/ ab  /h a  
Boundary condition 

SSSS CCCC 

0.5 

0.01 0.000136074 3.65492e-005 

0.05 1.72466e-006 8.6496e-007 

0.10 4.19861e-007 3.11035e-007 

1.0 

0.01 0.000844483 0.000268721 

0.05 8.60749e-006 3.75837e-006 

0.10 1.63836e-006 1.01027e-006 

2.0 

0.01 0.00210822 0.000537942 

0.05 2.01738e-005 6.88992e-006 

0.10 3.44499e-006 1.72863e-006 
 

 

 
 

 

 
 

Figure 3. Deformed shape for simply-supported and clamped auxetic plates  

and / 1, / 0.05b a h a   and 
21 0.646756   . 
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Table 3. Calculation values of the deflections  w  of the auxetic plate with negative  

Poisson’s ratio for different ratios /l h   1000 , / 20,F Pa a h a b     

 

/l h  21

cv  
Boundary condition 

SSSS CCCC 

0.2 -0.164652 8.67574e-006 3.82713e-006 

0.4 -0.394243 8.64811e-006 3.7976e-006 

0.6 -0.736624 8.59205e-006 3.74379e-006 

0.8 -1.30198 8.49303e-006 3.65204e-006 

1 -2.41329 8.31421e-006 3.48954e-006 

 

The analysis of the effect of /l h  on the 

deflections  w of the auxetic plate consider 

different values of  / 0.2,0.4,0.6,0.8,1l h  . From 

Table 3, the increasing in /l h  leads to decrease 

in deflections  w .  

 

 

  

 

Figure 4. The deflections  w  of auxetic plates. 

 

Figure 4b shows deflections  w  of the 

nodes in the diagonal direction of the plate as 

shown in Figure 4a. Figure 4 also illustates that 

deflections have maximum values at the center 

of the plate and in the SSSS boundary condition, 

deflections are larger than those in the CCCC 

boundary condition.
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Figure 5. Effect of uniform transverse pressure  F Pa  on the deflections  w  of the auxetic plate 

 21 0.646756    

The effect of uniform transverse pressure on 

the deflections  w  of the auxetic plate 

 21 0.646756    is presented in Figure 5. It 

can be seen that increasing the value of uniform 

transverse pressure makes the value of 

deflections  w and deformed shapes also 

increase (shown in Figure 6).   

 

 

 

 
 

 

Figure 6. Deformed shape for simply-supported and clamped auxetic plates with value  

of  uniform transverse pressure 800F Pa  and 21 0.646756   . 
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5. Conclusion 

The paper successfully applied finite 

element method and a new third-order shear 

deformation plate theory to study static bending 

of auxetic plate. The calculation results are 

compared with other published paper validating 

the reliability of the calculation program. Then, 

effect of parameters on static bending of auxetic 

plates are examined in this paper. 
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