

VNU Journal of Science: Natural Sciences and Technology



Journal homepage: https://js.vnu.edu.vn/NST

### Original Article

# High flame retardant performance of SiO<sub>2</sub>-TiO<sub>2</sub> sol coated on polyester/cotton fabrics

Pham Thi Thu Trang<sup>1,2</sup>, Le Ha Giang<sup>1</sup>, Nguyen Ba Manh<sup>1</sup>, Trinh Duc Cong<sup>1</sup>, Ngo Trinh Tung<sup>1</sup> and Vu Anh Tuan<sup>1,2.\*</sup>

<sup>1</sup>Institute of Chemistry, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.

<sup>2</sup>Graduate University of Science and Technology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.

> Received 10 November 2020 Revised 12 January 2021; Accepted 2 February 2021

**Abstract:**  $SiO_2$  and  $TiO_2$  sols were successfully synthesized by using sodium silicate and titanium chloride as Si and Ti sources.  $SiO_2$ - $TiO_2$  sol coated polyester/cotton fabric was fabricated by deep-coating method and using  $SiO_2$ ,  $TiO_2$  sols as coating materials.  $SiO_2$ - $TiO_2$  coated fabric were characterized by XRD, FTIR, TGA, SEM and EDX. From SEM image, it showed the  $SiO_2$ ,  $TiO_2$  particles of 20-30 nm which well deposited on fabric surface. TGA result revealed the significant improvement of thermal resistance and stability of  $SiO_2$ - $TiO_2$  coated fabric as compared to those of uncoated fabric. Flame retardant performance of  $SiO_2$ - $TiO_2$  coated fabrics was much better than that of uncoated fabric. Thus,  $SiO_2$ - $TiO_2$  coated fabric  $SiO_2$ - $TiO_2$  content of 26wt% showed the UL-94 classification of V-0 and LOI value of 30.3 were obtained. Moreover, mechanical property (tear strength) of  $SiO_2$ - $TiO_2$  coated fabrics were also improved.

Keywords: nano silica, titanium dioxide, polyester/cotton fabrics, flame retardant

#### 1. Introduction

Polyester/cotton fabric is a blend of polyester and cotton and it is widely used in the textile industry. The quality of blended fabric is improved by the combination of the comfort

Email address: vuanhtuan.vast@gmail.com

and ventilation of cotton yarn with high strength of polyester [1,2]. However, polyester / cotton fabric is flammable and it cannot be used as flame retardancy materials. Therefore, many efforts on flame retardancy improvements have been devoted [3,4]. Materials of coating can be of organic or inorganic nature. Halogen-based flame retardants materials have been shown to be one of the most effective materials to reduce the risk of fire, but the downside is the release of toxic and corrosive gases during combustion

Corresponding author.

https://doi.org/10.25073/2588-1140/vnunst.5167

[5,6]. Phosphorus and nitrogen based materials are preferably chosen as flame retardants because of their eco-friendly by-products, low toxicity. However, their poor flame retardant performance and low thermal stability were noted [7,8]. Flame retardants of inorganic nature such as nanosilica, nano alumino-silica, nano clay are often used to cover the fabric surface to create an insulating and fireproof protective layer and simultaneously, the physico-mechanical properties can be improved. Among inorganic flame retardants, nano silica and nano titanium dioxide have received a great interest because these materials are environmentally friendly, non-toxic and highly effective in slowing or resisting fire [9-12]. El-Shafei et al. [13] modified the fabric with nano  $TiO_2$  sol gel from titanium isopropoxide and the fire resistance of the TiO<sub>2</sub> modified fabric is significantly improved (LOI increased from 17.4% to 23%). Fei et al. [14] modified fabric with nano silica synthesized from TEOS and the significant enhance of flame retardancy (LOI value from 19.0 to 23.0) is reported. Liu et al. [15] reported that fabric coated with silica nano by using the sources of organic silicon TEOS and trimethylsilane and showed that the thermal stability was considerably improved. Most fabrics used for coating are cotton fabrics. Nano silica coating on polyester/cotton fabric is much more difficult due to its high smooths and low adhesion ability. In this study, we report the synthesis of SiO<sub>2</sub>, TiO<sub>2</sub> sols using sodium silicate and titanium chlorides as sources of Si and Ti. Polvester/cotton fabric was coated with  $SiO_2$ -TiO<sub>2</sub> sols by deep-coating method. Thermal resistance, flame retardancy and mechanical property (tear strength) were tested and evaluated.

#### 2. Experiments

*Chemicals and materials*: Sodium silicate 20 wt% was from company Sigma, TiCl<sub>4</sub> (purity of 99%, sigma company), KOH (purity

85%, Merck company), ion exchange (*AMBERLITE*<sup>TM</sup> IR 120 from Down Chemical company),  $H_2O_2$  (31 wt% from Aldrich company), NH<sub>4</sub>OH (30 wt% from Sigma company). Polyester/cotton fabric (trade mark-Lacoste, 35% polyester-65% cotton, 115 g/cm<sup>2</sup>) is provided by the textile Dong Xuan-Vietnam company.

#### 2.1. Synthesis of silica sol

Silica sol was synthesized by ion exchange method using Amberlite as ion exchange resin and sodium silicate (liquid glass) as source of silicon [11].

The process of synthesizing sol silica consists of the following steps: Step 1: Dissolution of sodium silicate in distilled water. Step 2: Na<sup>+</sup> ion exchange by using ion exchange resin (*AMBERLITE*<sup>TM</sup> IR 120). Step 3: Adjusting pH value of 8.5-9.0 by KOH addition to form the Si(OH)<sub>4</sub> slurry. Step 4: Stirring the mixture until to get the homogeneous sols.

#### 2.2. Synthesis of titanium dioxide sol

Titanium dioxide sol was synthesized by using titanium tetrachloride (TiCl<sub>4</sub>) as Ti soured and H<sub>2</sub>O<sub>2</sub> as an oxidizing agent. The synthesis procedure of TiO<sub>2</sub> sol was described in [reference 16], consisting four following steps: Step 1: Titanium tetrachloride (TiCl<sub>4</sub>) was slowly added to the cold distilled water container in an ice batch under strong stirring for 30 minutes until to get a clear solution. NH<sub>4</sub>OH solution was then added to the solution to precipitate the  $Ti(OH)_4$  slurry. Step 2: Ti(OH)<sub>4</sub> hydroxide slurry was washed with distillated water several times to remove Cl<sup>-</sup>. Step 3: Ti(OH)<sub>4</sub> slurry was oxidized by adding  $H_2O_2$  (30 wt%) to obtain the titanium peroxide (Ti-OOH). Step 4: Titanium peroxide was heated at 90 °C for 8h under stirring condition and then cooled down to room temperature. SiO<sub>2</sub>-TiO<sub>2</sub> sol solution was prepared by mixing SiO<sub>2</sub> sol solution (10 wt% SiO<sub>2</sub>) and TiO<sub>2</sub> sol solution (2 wt% TiO<sub>2</sub>) under stirring condition.

This  $SiO_2$ -Ti $O_2$  sol solution was used for coating polyester/cotton fabric.

2.3.  $SiO_2$ -TiO<sub>2</sub> sol coating on polyester/cotton fabric

Polyester/cotton fabric (35 % polyester, 65% Cotton) was cut in small pieces of 60 x 40 mm size. Polyester/cotton fabric piece was deepened in a container with 50 ml SiO<sub>2</sub>-TiO<sub>2</sub> sol solution (10 wt% SiO<sub>2</sub> and 2 wt% TiO<sub>2</sub>) for 2 minutes and then ultrasonically treated for 5 minutes. The SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric was dried at 80 °C for 30 minutes in an oven. This sample was denoted as S<sub>1</sub> (one time coating sample). Fabric after 3, 5 and 7 times coating were denoted as S<sub>3</sub>, S<sub>5</sub> and S<sub>7</sub>.

## 2.4. Characterization of $SiO_2$ - $TiO_2$ coated fabrics

The X-ray diffraction (XRD) measurements performed on а D8 Advance were diffractometer (Bruker, Germany) using CuK<sub>a</sub> as radiation source,  $\lambda = 0.154$  06 nm, a range of  $2\theta = 10^{\circ} - 80^{\circ}$ . The morphology of the samples was examined on scanning electron microscopy (SEM, JEOL JSM 6500F). The FT-IR spectra of the samples were recorded by the KBr pellet method (JACOS 4700). EDX of samples were measured using JEOL JED-2300 spectrometer. Thermal analyses were conducted from room temperature to 600°C under air atmosphere using LABSYS evo TG-DTA 1600. UL-94 classification and limiting oxygen index (LOI) were determined according the standards ASTM D2863, BS ISO4589-2.

#### 3. Results and discussion

## 3.1. Structure characterization of $SiO_2$ -Ti $O_2$ coated fabric

XRD pattern of polyester/cotton fabric (fig 1a) showed the peaks at 20 of 22.66° and 25.44° which corresponded to string segments of small crystal structure of polyester/cotton fabric [17-19]. In the XRD patterns of SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics, the intensity of the peaks at  $2\theta$  of  $22.66^{\circ}$ and  $25.44^{\circ}$  decreased with increasing the SiO<sub>2</sub>-TiO<sub>2</sub> content. This clearly indicated the coverage of SiO<sub>2</sub> and TiO<sub>2</sub> particles on polyester/cotton fabrics. Typical peaks of SiO<sub>2</sub> and TiO<sub>2</sub> phase were not detected since these particles were amorphous [20].



and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics (b-e)

FTIR spectra of polyester/cotton fabric and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics were presented in figure 2. The FTIR spectrum of polyester/cotton fabric (fig 2.a) showed the band at  $3430 \text{ cm}^{-1}$  is attributed to the vibration of C-OH of fabrics (cellulose) [21,22]. Bands at 1690 -1700 cm<sup>-1</sup> and 730 cm<sup>-1</sup> are corresponded to the vibrations of C=O and C-C bonds in fabric structure [22,23]. In the FTIR spectra of  $SiO_2$ -Ti $O_2$ coated fabrics (figure2, b-e), a new band appeared at 3490-3500 cm<sup>-1</sup> which assigned to the vibrations of Si-OH, Ti-OH groups [24,25]. Also, new bands at 780 cm<sup>-1</sup>, 480 cm<sup>-1</sup> appeared which attributed to vibrations of Si-O-Si, Ti-O-Ti, Si-O, Ti-O groups of SiO<sub>2</sub>, TiO<sub>2</sub> structure. Moreover, disappearing of bands at 3430 cm<sup>-1</sup>, 1730 cm<sup>-1</sup> and 700 cm<sup>-1</sup> which are characteristic for fabric structure indicated the coverage of SiO<sub>2</sub>, TiO<sub>2</sub> particles on the polyester/cotton fabric surface [26,27]. As presented in figure 3A, weight loss diagram of polyester/cotton fabric showed 3 stages: at the first stage (50 -200 °C), weight loss of 10 wt% was observed.



Fig. 2: FTIR spectra of polyester/cotton fabric (a) and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric (b-e)

This weight loss is due to the water desorption. At the second stage (250 - 350 °C), weight loss of 50 wt% is noted. This is due to the partial decomposition of fabric. At the third stage (350 - 500 °C), weight loss was 38 wt%. The weight loss in this region is due to the further decomposition of fabrics. As seen in the derivative thermogravimetry of polyester/cotton fabric (Fig 3B), the decomposition occurred at T<sub>max</sub> of 330 - 430 °C and 480 °C. The behavior of weight loss for SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics was different from that of polyester/cotton fabric. Thus, in the temperature range from 50 °C to 300 °C, weight loss of 1.5-2% was observed. In the range from 350 °C to 550 °C, weight loss of  $SiO_2$ -TiO<sub>2</sub> coated fabric (S<sub>1</sub>-S<sub>7</sub>) was 65 wt%, 50 wt%, 41 wt% and 38 wt%, respectively. From this result, it clearly indicated that SiO<sub>2</sub>-TiO<sub>2</sub> coating reduced the weight loss of fabric. Thus,  $SiO_2$ -TiO<sub>2</sub> coated fabric (7 coating times) showed the weight loss of 38% which was 2.5 times less than that of polyester/cotton fabric (98 wt%). Moreover, the decomposition of SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics needed higher temperature (see fig 3B).

#### 3.2. Morphology and chemical composition

SEM images of polyester/cotton fabric and  $SiO_2$ -TiO<sub>2</sub> coated fabric (S<sub>7</sub>) were given in figure 4. In figure 4A, polyester/cotton fabric



Fig. 3: Weight loss (A) and derivative thermogravimetry (B) of polyester/cotton fabric and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric

showed the heterogeneous structure with the pore system consisted of large pore (100 -150 nm), medium pore (50-60 nm) and small pore (20 -30 nm). In the SEM image of SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric (figure 4B), it can be seen SiO<sub>2</sub>, TiO<sub>2</sub> particles of 30-40 nm size which filled up the pore system of polyester/cotton fabric and simultaneously covered the fabric surface.

EDX spectra of polyester/cotton fabric and  $SiO_2$ -TiO<sub>2</sub> coated fabric-S<sub>7</sub> were presented in figure 5 and elemental composition was given in table 1.



Fig. 4: SEM image (A) polyester/cotton fabric and (B) SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric (S<sub>7</sub>)

As given in Table 1, C content decreased with increasing SiO<sub>2</sub>-TiO<sub>2</sub> coating times while O, Si and Ti content increased with increasing  $SiO_2$ -TiO<sub>2</sub> coating times (S<sub>1</sub>-S<sub>7</sub>). Thus, C content decreased from 51.06 wt% to 20.45 wt%, respectively. O content of S1, S3, S5 and S<sub>7</sub> samples was 28.38%, 33.41%, 38.7% and 45.97 wt%, respectively. N content of S<sub>1</sub>, S<sub>3</sub>, S<sub>5</sub> and S<sub>7</sub> samples was 14.12%, 12,42%, 10.09% and 7.58%. Si content of  $S_1$ ,  $S_3$ ,  $S_5$  and  $S_7$ samples was 5.34%, 11.06%, 18.72% and 23.99%, respectively. Ti content of S<sub>1</sub>, S<sub>3</sub>, S<sub>5</sub> and S7 sample was 1.01%, 1.35%, 1.64% and 2.01 wt%, respectively. Interestingly, the ratio of Si/Ti increased with increasing SiO<sub>2</sub>-TiO<sub>2</sub> coating times. Normally, this ratio Si/Ti should maintain unchanged since the same concentration of SiO<sub>2</sub>-TiO<sub>2</sub> solution (10 wt% SiO<sub>2</sub> and 2 wt% TiO<sub>2</sub>) was used. This can be explained on the basis of the competition between SiO<sub>2</sub> and TiO<sub>2</sub> particles since concentration of SiO<sub>2</sub> was 5 times higher than that of TiO<sub>2</sub> which promoted much more SiO<sub>2</sub> deposition on fabric surface than TiO<sub>2</sub> deposition.



Fig. 5: EDX spectra of polyester/cotton fabric (A) and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric-S<sub>7</sub> (B)

Table 1: Elemental composition of polyester/cotton fabric and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics

| Element, wt.%                             | c     | 0     | N     | Si    | Ti   | Si+Ti |
|-------------------------------------------|-------|-------|-------|-------|------|-------|
| Sumpre                                    | v     | Ŭ     | - 1   |       |      |       |
| Polyeste/cotton                           | 60.24 | 23.63 | 16.13 | -     | -    | -     |
| fabric                                    |       |       |       |       |      |       |
| SiO <sub>2</sub> -TiO <sub>2</sub> coated | 51.06 | 28.38 | 14.21 | 5.34  | 1.01 | 6.35  |
| fabric (S <sub>1</sub> )                  |       |       |       |       |      |       |
| SiO <sub>2</sub> -TiO <sub>2</sub> coated | 41.76 | 33.41 | 12.42 | 11.06 | 1.35 | 12.41 |
| fabric (S <sub>3</sub> )                  |       |       |       |       |      |       |
| SiO <sub>2</sub> -TiO <sub>2</sub> coated | 30.85 | 38.7  | 10.09 | 18.72 | 1.64 | 20.36 |
| fabric (S5)                               |       |       |       |       |      |       |
| SiO <sub>2</sub> -TiO <sub>2</sub> coated | 20.45 | 45.97 | 7.58  | 23.99 | 2.01 | 26.0  |
| fabric (S7)                               |       |       |       |       |      |       |

3.3. Flame retardancy and mechanical property

UL-94 classification and limiting oxygen index (LOI) of polyester/cotton fabric and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric were listed in the table 2

Table 2: UL-94 classification and limiting oxygen index (LOI) of polyester/cotton fabric and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics

| Sample                                                     | UL - 94 | LOI<br>(%) |
|------------------------------------------------------------|---------|------------|
| Polyester/cotton fabric                                    | V-2     | 17.5       |
| $SiO_2$ -TiO <sub>2</sub> coated fabrics (S <sub>1</sub> ) | V-2     | 19.0       |
| $SiO_2$ -TiO <sub>2</sub> coated fabrics (S <sub>3</sub> ) | V-1     | 23.6       |
| $SiO_2$ -TiO <sub>2</sub> coated fabrics (S <sub>5</sub> ) | V-1     | 25.2       |
| $SiO_2$ -TiO <sub>2</sub> coated fabrics (S <sub>7</sub> ) | V-0     | 30.3       |

As seen in table 2, polyester/cotton fabric and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric-S1 had the UL-94 of V-2 which did not satisfy the quality requirement for flame retardant materials. SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics (S<sub>3</sub> and S<sub>5</sub>) showed UL-94 classification of V-1 which satisfied the quality requirement for flame retardant materials. SiO<sub>2</sub>- $TiO_2$  coated fabric-S<sub>7</sub> reached the best quality requirement for flame retardant materials (UL-94 classification of V-0). Polyester/cotton fabric showed the LOI value of 17.5 while the LOI value of SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics was 19.0 (for S<sub>1</sub>), 23.6 (for S<sub>3</sub>), 25.2 (for S<sub>5</sub>) and 30.3 (for  $S_7$ ), respectively. It is well known that  $O_2$ content in the air is ca. 19 % (v/v). Therefore, polyester/cotton fabric is easily burned in air.  $SiO_2$ -TiO<sub>2</sub> coated fabrics (S<sub>3</sub>, S<sub>5</sub>) with LOI value of 23.6-25.2 are slowly burned in air.  $SiO_2$ -TiO<sub>2</sub> coated fabric (S<sub>7</sub>) showed the highest LOI value of 30.3 which is unburnable under flame. Thus, the SiO<sub>2</sub> and TiO<sub>2</sub> nanoparticles with the size of 30-50 nm were covered on the surface of the polyester/cotton fabric to help prevent contact between flame and combustible components (polyester/cotton fabric).

*Mechanical property of polyester/cotton fabric and SiO*<sub>2</sub>*-TiO*<sub>2</sub> *coated fabrics* 

One of the most important physicomechanical properties of fabric is the tear strength. Tear strength of polyester/cotton fabric and  $SiO_2$ -Ti $O_2$  coated fabric was shown in table 3.

| Sample                                                    | Tear strength |  |  |
|-----------------------------------------------------------|---------------|--|--|
|                                                           | (N/mm)        |  |  |
| Polyester/cotton fabric                                   | 39.37         |  |  |
| $SiO_2$ -Ti $O_2$ coated fabric (S <sub>1</sub> )         | 41.22         |  |  |
| $SiO_2$ -TiO <sub>2</sub> coated fabric (S <sub>3</sub> ) | 43.35         |  |  |
| $SiO_2$ -Ti $O_2$ coated fabric (S <sub>5</sub> )         | 45.27         |  |  |
| $SiO_2$ -Ti $O_2$ coated fabric (S <sub>7</sub> )         | 37.56         |  |  |

Table 3: Tear strength of polyester/cotton fabric  $SiO_2$ -TiO\_2 coated fabrics

As seen in table 3, the increase of tear strength from 39.37 (polyester/cotton fabric) to 45.26 N/mm (SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric-S<sub>5</sub>) was observed. Further SiO<sub>2</sub>-TiO<sub>2</sub> coating (SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric-S<sub>7</sub>) leaded to decrease the tear strength (37.56 N/mm). This can be explained by the fact that SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric with high loading, SiO<sub>2</sub> and TiO<sub>2</sub> particles tended to the agglomeration, making SiO<sub>2</sub>-TiO<sub>2</sub> coated fabric become more fragile and consequently decreased the tear strength.

#### 4. Conclusions

From the obtained results, some conclusions could be drawn: SiO<sub>2</sub> and TiO<sub>2</sub> sols were successfully synthesized by using sodium silicate and titanium chloride as Si and Ti sources. SiO<sub>2</sub>-TiO<sub>2</sub> sol polyester/cotton fabric was fabricated by deep coating method and using SiO<sub>2</sub>-TiO<sub>2</sub> sol as coating materials. SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics with different SiO<sub>2</sub>-TiO<sub>2</sub> content were made by repeating the coating times. Polyester/cotton fabric and SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics were characterized by XRD, FTIR, TGA, SEM and EDX. From SEM result, it showed that SiO<sub>2</sub>, TiO<sub>2</sub> particles of 20-30 nm filled up the pore system of fabric and well deposited on fabric surface. From TGA analysis of the samples, it revealed the significant

improvement of thermal resistance and stability of SiO<sub>2</sub>-TiO<sub>2</sub> coated fabrics.

Flame retardancy and mechanical property (tear strength) of polyester/cotton fabric and  $SiO_2$ -TiO\_2 coated fabric were tested and evaluated. The  $SiO_2$ -TiO\_2 coated fabric (7 coating times, Si-Ti content of 26 wt%) showed the highest flame retardancy performance. Thus, UL-94 classification of V-0 and LOI value of 30.3 were obtained. Additionally, mechanical property (tear strength) of  $SiO_2$ -TiO<sub>2</sub> coated fabrics was also improved.

#### Acknowledgement

Authors thank the Vietnam Academy of Science and Technology- VAST for financial support (TDPCCC.03/18-20 and VHH.2020.2.01).

#### References

- [1] M. Leistner, A.A. Abu-Odeh, S.C. Rohmer, J.C. Grunlan, Water-based chitosan/ melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric, Carbohydr. Polym. 130 (2015) 227–232. https://d oi.org/10.1016/j.carbpol.2015.05.005
- [2] Y. Pan, L. Liu, X. Wang, L. Song, Y. Hu, Hypophosphorous acid cross-linked layerby-layer assembly of green polyelectrolytes on polyestercotton blend fabrics for durable flame-retardant treatment, Carbohydr. Polym. 201 (2018) 1–8. https://doi.org/10.1016/j.carbpol.2018.08.044
- [3] M.M. Abd EI-Hady, A. Farouk, S. Sharaf, Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids, Carbohydr. Polym. 92 (2013) 400–406. https://doi .org/10.1016/j.carbpol.2012.08.085
- [4] H. Yang, C.Q. Yang, Durable flame retardant finishing of the nylon/cotton blend fabric using a hydroxyl-functional organophosphorus oligomer, Polym. Degrad. Stab. 88 (2005) 363–370. https://doi.org/10.1016/j.polymdegradstab.2004.1 1.013
- [5] J. Legler, A. Brouwer, Are brominated flame retardants endocrine disruptors? *Environ. Int.* 29 (2003) 879–885. https://doi.org/10.1016/S0160-4120(03)00104-1.
- [6] F. Rahman, K.H. Langford, M.D. Scrimshaw, J.N. Lester, Polybrominated diphenyl ether (PBDE) flame retardants, Sci. Total Environ. 275

(2001) 1–17. https://doi.org/10.1016/S0048-9697(01)00852-X

- [7] Q. Tang, B. Wang, G. Tang, Y. Shi, X. Qian, B. Yu, L. Song, Y. Hu, Preparation of microcapsulated ammonium polyphosphate pentaerythritol with glycidyl methacrylate, butyl methacrylate and their synergistic flameretardancy for ethylene vinyl acetate copolymer, Polym. Adv. Technol. 25 (2014) 73–82. https://doi.org/10.1002/pat.3207
- [8] F. Carosio, J. Alongi, G. Malucelli, Layer by Layer ammonium polyphosphate-based coating for flame retardancy of polyester-cotton blends, Carbohydr. Polym. 88 (2012) 1460–1469. https://doi.org/10.1016/j.carbpol.2012.02.049
- [9] L. Yan, Z. Xu, X. Wang, Influence of nano-silica on the flame retardancy and smoke suppression properties of transparent intumescent fireretardant coatings, Progress in Organic Coatings, 112 (2017) 1460–1469. https://doi.org/10.1016/ j.porgcoat.2017.07.017
- [10] H. Zhan, J. Lu, H. Yang, H. Yang, J. Lang and Q. Zhang, Synergistic Flame-Retardant Mechanism of Dicyclohexenyl Aluminum Hypophosphite and Nano-Silica, Polymers, Published: 11 (7) (2019) 1211. https://doi.org/10.1177/0892705717738287
- [11] L. Qomariyah, F.N. Sasmita, H.R. Novaldi, W. Widiyastuti, Winardi, Preparation of Stable Colloidal Silica with Controlled Size Nano Spheres from Sodium Silicate Solution, Materials Science and Engineering, 395 (2018) 012017. https://doi.org/10.1088/1757-899X/395/1/012017
- [12] T. Kashiwagi, J.W. Gilman, K.M. Butler, R.H. Harris. Flame retardant mechanism of silica gel/silica, Article *in* Fire and Materials, 24 (6) (2000) 277-289. https://doi.org/10.1002/1099101 8(200011/12)24:6<277::AID-AM746>3.0.CO;2-A
- [13] A. El-Shafei, M. ElShemy, A. Abou-Okeil. Ecofriendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties, Carbohydrate Polymers, 118(2015) 83–90. https://doi.org/10.1016/j.carbpol.2014.11 .007
- [14] D.D. Fan, F. You, Y. Zhang, Z. Huang, Flame retardant effects of fabrics finished by hybrid nano-micro silica-based Sols, Procedia Engineering, 211 (2018) 160–168. https://doi.org /10.1016/j.proeng.2017.12.124
- [15] C. Liu, T. Xing, B. Wei, G. Chen, Synergistic Effects and Mechanism of Modified Silica Sol Flame Retardant Systems on Silk Fabric, Materials, 11 (2018) 1842. https://doi.org/10.3 390/ma11101842
- [16] N. Sasirekha, B. Rajesh, Y.W. Chen, Synthesis of TiO<sub>2</sub> sol in a neutral solution using TiCl<sub>4</sub> as a

precursor and  $H_2O_2$  as an oxidizing agent, Thin Solid Films, 518 (2009) 43–48. https://doi.org /10.1016/j.tsf.2009.06.015

- [17] K.B. Yazhinia and H.G. Prabu, Study on flameretardant and UV-protection properties of cotton fabric functionalized with ppy–ZnO–CNT nanocomposite, RSC Adv, 5 (2015) 49062-49069. https://doi.o rg/10.1039/C5RA07487H
- [18] I. Ahmada, C.W. Kan, Z. Yao, Photoactive cotton fabric for UV protection and self-cleaning, RSC Adv, 9 (2019) 18106-18114. https://doi.org/10. 1039/C9RA02023C
- [19] Z. Zhaoa, J. Zhoua, T. Fana, L. Lia, Z. Liua, Y. Liuab, M. Lu, An effective surface modification of polyester fabrics for improving the interfacial deposition of polypyrrole layer, Materials Chemistry and Physics, 203 (2018) 89-96. https://doi.org/10.1 016/j.matchemphys.2017.09.062
- [20] M. Mohammadi, Mitra Dadvar, Bahram Dabir, TiO<sub>2</sub>/SiO<sub>2</sub> nanofluids as novel inhibitors for the stability of asphaltene particles in crude oil: Mechanistic understanding, screening, modeling, and optimization, Journal of Molecular Liquids, 238 (2017) 326-340. https://doi.org/10.1016/j. molliq.2017.05.014
- [21] C. Chunga, M. Lee, E. Kyung Choe, Characterization of cotton fabric scouring by FT-IR ATR spectroscopy, Carbohydrate Polymers, 58 (2004) 417–420. https://doi.org/10.1016/j.car bpol.2004.08.005
- [22] T. Huang, D. Li and M. Ek, Water repellency improvement of cellulosic textile fibers by betulin

and a betulin-based copolymer, Cellulose, 25 (2018) 2115–2128. https://doi.org/10.1007/s105 70-018-1695-5

- [23] N. Lv, X. Wang, S. Pengab, L. Luo and R. Zhou, Superhydrophobic/superoleophilic cotton-oil absorbent: preparation and its application in oil/water separation, RSC Adv, 8 (2018) 30257-30264. https://doi.org/10.1039/C8RA05420G
- [24] S. Sun, T. Deng, H. Ding, Y. Chen, W. Chen, Preparation of nano-TiO<sub>2</sub>-Coated SiO<sub>2</sub> microsphere composite material and evaluation of its self-cleaning property, Nanomaterials, 7(11) (2017) 367. https://doi.org/10.3390/nano7110367
- [25] H.A. Budiartia, R.N. Puspitasaria, A.M. Hattaa, Sekartedjoa and Doty Dewi Risantia, Synthesis and characterization of TiO<sub>2</sub>@SiO<sub>2</sub> and SiO<sub>2</sub>@TiO<sub>2</sub> core-shell structure using lapindo mud extract via sol-gel method, Procedia Engineering, 170 (2017) 65 - 71. https://doi.org/10.1016/j.proeng. 2017 .03.013
- [26] J. Sun, K. Xu, C. Shi, J. Ma, W. Li, X. Shen, Influence of core/shell TiO<sub>2</sub>@SiO<sub>2</sub> nanoparticles on cement hydration, Construction and Building Materials, 156 (2017) 114-122. https://doi.org/10.101 6/j.conbuildmat.2017.08.124
- [27] H. Zhang, X. Wang, N. Li, J. Xia, Q. Meng, J. Ding, TiO<sub>2</sub>/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate, RSC Adv, 60 (2018) 34241-34251. https://doi.org/10.1039/C8RA06681G