

VNU Journal of Science: Natural Sciences and Technology

Journal homepage: https://js.vnu.edu.vn/NST

Original Article

Enhanced Photodegradation Ability of Antibiotics with Composite Based on V₂O₅ under Visible Light

Nguyen Thi Phuong Le Chi¹, Truong Thi Vuong², Nguyen Thi Lan², Truong Cong Duc², Truong Thanh Tam², Nguyen Tri Quoc³, Nguyen Van Luong², Tran Thi Thu Phuong², Nguyen Vu Ngoc Mai²

¹Ho Chi Minh University of Natural Resources and Environment, 236B Le Van Sy, Ho Chi Minh, Vietnam ²Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Vietnam

³Mientrung Industry and Trade College, 251 Nguyen Tat Thanh, Tuy Hoa, Vietnam

Received 10th March 2024 Revised 09th April 2025; Accepted 16th April 2025

Abstract: In this paper, V_2O_5 combining with $g-C_3N_4$ were obtained to reduce charge recombination rate between electrons and holes in semiconductors. X-ray photoelectron spectroscopy (XPS) results indicated certain interaction between V_2O_5 and $g-C_3N_4$ in the $V_2O_5/g-C_3N_4$ heterojunction. In addition, the reducing in recombination of photogenerated electrons and holes was confirmed via the photoluminescence (PL) spectrum. The photocatalytic activities of the as-synthesized materials were investigated by the degradation of tetracycline hydrochloride (TC) under visible light. The $V_2O_5/g-C_3N_4$ heterojunction is more active than pure V_2O_5 and $g-C_3N_4$. The TC degradation efficiency by $V_2O_5/g-C_3N_4$ photocatalyst under visible light was 82.18% after 180 minutes. The improvement in photogenerated electron and hole pairs.

Keywords: V_2O_5 , g-C₃N₄, photocatalytic activity, visible light, recombination, tetracycline hydrochloride.

* Corresponding author.

E-mail address: truongthivuong2010@gmail.com

https://doi.org/10.25073/2588-1140/vnunst.5617

Tăng cường khả năng phân hủy kháng sinh trong vùng ánh sánh nhìn thấy bằng vật liệu tổ hợp trên cơ sở V_2O_5

Nguyễn Thị Phương Lệ Chi¹, Trương Thị Vương², Nguyễn Thị Lan², Trương Công Đức², Trương Thanh Tâm², Nguyễn Trí Quốc³, Nguyễn Văn Lượng², Trần Thị Thu Phương², Nguyễn Vũ Ngọc Mai²

> ¹Trường Đại học Tài nguyên và Môi trường Thành phố Hồ Chí Minh, 236B Lê Văn Sỹ, Thành phố Hồ Chí Minh, Việt Nam

²Trường Đại học Quy Nhơn, 170 An Dương Vương, Thành phố Quy Nhơn, Việt Nam

³Trường Cao đẳng Công thương Miền trung, 251 Nguyễn Tất Thành, Thành phố Tuy Hòa, Việt Nam

Nhận ngày 10 tháng 3 năm 2024

Chỉnh sửa ngày 09 tháng 4 năm 2025; Chấp nhận đăng ngày 16 tháng 4 năm 2025

Tóm tắt: Trong bài báo này, vật liệu V_2O_5 được biến tính bằng g- C_3N_4 nhằm hạn chế sự tái tổ hợp giữa các điện tử và lỗ trống quang sinh trong V_2O_5 . Kết quả từ phổ XPS (quang điện tử tia X) cho thấy, có sự tương tác giữa V_2O_5 và g- C_3N_4 trong vật liệu V_2O_5/g - C_3N_4 . Đồng thời, khi biến tính V_2O_5 bằng g- C_3N_4 tạo thành vật liệu V_2O_5/g - C_3N_4 đã làm giảm sự tái tổ hợp giữa điện tử và lỗ trống quang sinh thông qua sự xác nhận của phổ quang phát quang (PL). Hiệu suất phân hủy tetracycline hydrochloride (TC) dưới ánh sáng nhìn thấy và được xúc tác bởi vật liệu V_2O_5/g - C_3N_4 là 82,18% sau 180 phút. Giá trị này cao hơn so với hiệu suất phân hủy TC trên vật liệu V_2O_5 và g- C_3N_4 trong vùng ánh sáng nhìn thấy do hạn chế được sự tái tổ hợp giữa các electron và lỗ trống quang sinh trong vật liệu V_2O_5/g - C_3N_4 .

Từ khóa: $V_2O_5/g-C_3N_4$, hoạt tính xúc tác, ánh sáng vùng nhìn thấy, tái tổ hợp, tetracycline hydrochloride.

1. Mở đầu

Hiện nay, sự tồn dư kháng sinh đang gây ra mối đe dọa nghiêm trọng đến cân bằng môi trường sinh thái, sức khỏe con người và sự kháng kháng sinh của các sinh vật. Để xử lý các chất kháng sinh, phương pháp xúc tác quang hóa dị thể đang được biết là có tiềm năng nhờ các ưu điểm về khả năng khoáng hóa, thân thiện môi trường, vật liệu xúc tác được tái sử dụng nhiều lần, có thể tận dụng được nguồn kích thích là bức xạ mặt trời đối với những vật liệu bán dẫn có giá trị năng lượng vùng cấm phù hợp với bước sóng ở vùng bức xạ khả kiến.

Dia chi email: truongthivuong2010@gmail.com https://doi.org/10.25073/2588-1140/vnunst.5617

Gần đây, vật liêu bán dẫn xúc tác quang mới với vùng cấm có giá tri năng lương nhỏ được quan tâm nghiên cứu [1-5]. Ưu điểm của các vật liệu này là hoạt động trong vùng ánh sáng nhìn thấy, nên khá thuận lợi để xúc tác phân hủy các chất ô nhiễm hữu cơ. Tuy nhiên, yếu điểm của nhóm vật liệu mới này là sự tái kết hợp nhanh giữa các điện tử - lỗ trống quang sinh và chỉ có điên tử ở vùng dẫn khử được O_2 thành O2[•] hoặc lỗ trống ở vùng hóa tri oxi hóa được H₂O thành HO. Trong số các vật liệu bán dẫn thể hệ mới, các hợp chất bán dẫn dạng oxide như V₂O₅ đã nhận được sự chú ý của nhiều nhà nghiên cứu (với giá tri năng lương vùng cấm khoảng 2,10 eV) [6-9] nhờ hoạt tính xúc tác phân hủy cao các hợp chất hữu cơ dưới bức xa vùng nhìn thấy và dễ tổng hợp. Yếu điểm của V₂O₅ là chỉ có lỗ trống ở vùng hóa tri oxi hoá H₂O tạo thành 'OH. Do đó, các nghiên cứu biến

2

^{*} Tác giả liên hệ.

tính V_2O_5 hiện nay tập trung chủ yếu vào việc tổ hợp V_2O_5 với một bán dẫn khác có năng lượng của vùng cấm nhỏ mà có thế khử ở vùng dẫn phù hợp (âm hơn so với thế khử chuẩn của O_2/O_2) để tham gia phản ứng khử O_2 thành ion O_2 là tác nhân trung gian tạo gốc HO để phân hủy các chất hữu cơ ô nhiễm, đồng thời giảm được sự tái tổ hợp giữa các cặp điện tử - lỗ trống quang sinh dẫn đến hoạt tính xúc tác tăng [10-15]. Do vậy, trong nghiên cứu này, vật liệu V_2O_5 được biến tính bằng g-C₃N₄ nhằm phân hủy các chất kháng sinh trong nước.

2. Thực nghiệm

2.1. Tổng hợp vật liệu

2.1.1. Tổng hợp V2O5

Cho 0,1g ammonium metavanadate và 0,1 gam cetyl trimethylammonium bromide (CTAB) hòa tan hết vào 100 mL hỗn hợp nước cất - ethanol và khuấy đều (dung dịch X). Thêm từ từ dung dịch acid nitric vào dung dịch X trong điều kiện khuấy liên tục cho đến khi pH đạt 2,5. Hỗn hợp cho vào bình thủy nhiệt (teflon), sau đó đặt vào tủ và giữ ở 160 °C trong 12 giờ, thu được chất rắn màu cam vàng. Chất rắn được rửa với ethanol và nước cất, đem sấy ở 80 °C. Kết tủa sau khi sấy được nung ở 530 °C trong 2 giờ, thu được vật liệu V₂O₅ [8, 16].

2.1.2. Tổng hợp g-C₃N₄

Cân 1 gam urea cho vào chén nung, đặt vào lò nung và tiến hành nung trong điều kiện yếm khí ở nhiệt độ 530 °C (với tốc độ gia nhiệt 5 °C/phút trong 2 giờ). Để nguội lò tự nhiên đến nhiệt độ phòng, thu được g-C₃N₄ màu vàng [17].

2.1.3. Tổng hợp vật liệu V₂O₅/g-C₃N₄

Vật liệu V₂O₅ và g-C₃N₄ được cho vào cốc theo tỉ lệ mol V₂O₅ : g-C₃N₄ là 1,5:1. Sau đó, phân tán V₂O₅ và g-C₃N₄ trong dung môi ethannol theo tỷ lệ khối lượng V₂O₅/g-C₃N₄ (g)/thể tích ethanol (mL) = 1/20. Hỗn hợp đem siêu âm 15 phút để phân tán đều, tiếp tục khuẩy hỗn hợp trong 2 giờ. Sau đó, cho bay hơi hỗn hợp ở 80 °C, chất rắn sau bay hơi được nung ở 530 °C (gia nhiệt 5 °C/phút) trong điều kiện yếm khí với thời gian 2 giờ, thu được V₂O₅/g-C₃N₄.

2.2. Đặc trưng vật liệu

Phương pháp XRD (D8-Advance 5005) dùng để xác định cấu trúc. Phương pháp UV-Vis-DRS (3101PC Shimadzu) để xác định đặc tính hấp thụ ánh sáng. Phương pháp XPS (Karatos Axis ULTRA) và IR (Nicolet Magna-IR 760) để phân tích liên kết giữa các nguyên tố. Phương pháp PL (Fluoromax-4, Jobin-Yvon Co, France) khảo sát sự tái kết hợp giữa các điện tử và lỗ trống quang sinh.

2.3. Thí nghiệm phân hủy TC

Cho 0,1 gam xúc tác vào cốc thủy tinh đã chứa 200 mL dung dịch TC nồng đô 10 mg/L. đặt cốc trên máy khuẩy từ, khuẩy đều cốc để sự hập phụ và giải hập phụ đạt cân bằng (bóng tối). Sau thời gian đạt cân bằng hấp phụ, lấy một lượng xác định dung dịch TC đem tách chất xúc tác và đo nồng độ TC còn lại. Nồng độ TC ở thời điểm này là nồng đô đầu vào khi thực hiên khảo sát hoat tính của xúc tác. Tiếp tục khuấy đều (600 vòng/phút) hỗn dịch dưới điều kiện ánh sáng đèn led trắng (30 W) có cường độ tại bề mặt ánh sáng đèn led tiếp xúc với dung dịch là 41.200 lux (sử dụng máy đo cường đô ánh sáng LX-1010B, dưa vào bô phân cảm biến của máy để đọc và kiểm tra mức độ cung cấp ánh sáng của đèn led trắng), bước sóng 400 $< \lambda < 700$ nm, đặt cách bề mặt dung dịch phản ứng 40 cm, nhiệt đô được duy trì ở 30 °C. Ứng với một thời gian nhất định, một lượng xác định dung dịch TC được đem tách chất xúc tác và đo nồng độ TC còn lại (ở bước sóng 355 nm bằng phương pháp trắc quang trên máy UV-Vis (CE-2011)).

3. Kết quả và thảo luận

3.1. Đặc trưng vật liệu

Giản đồ nhiễu xạ tia X của các vật liệu V_2O_5 , g-C₃N₄ và V_2O_5/g -C₃N₄ được trình bày ở Hình 1. Trên giản đồ nhiễu xạ tia X của g-C₃N₄ ở Hình 1 chỉ ra rằng, vật liệu V_2O_5 có các đỉnh nhiễu xạ ở khoảng 20 bằng 15,1°; 20,2°; 26,1°; 31°,05 ứng với cấu trúc orthorhombic của V_2O_5 (thẻ chuẩn JCPDS 75-0457), còn xúc tác g-C₃N₄, đỉnh nhiễu xạ có cường độ khá mạnh xuất hiện tại

vị trí 2-theta khoảng 27,40° được quy cho sự sắp xếp của các hệ liên hợp thơm, ứng với mặt (002) minh chứng cho cấu trúc của g- C_3N_4 (thẻ chuẩn JCPDS 87-1526). Đối với giản đồ XRD của xúc tác $V_2O_5/g-C_3N_4$ xuất hiện hầu hết các đỉnh nhiễu xạ đặc trưng của V_2O_5 và chỉ xuất hiện đỉnh nhiễu xạ ở 20 bằng 27,4° nhưng có cường độ thấp của g- C_3N_4 .

4

Hình 1. Giản đồ nhiễu xạ tia X của các vật liệu V₂O₅, g-C₃N₄ và V₂O₅/g-C₃N₄.

Trạng thái hóa học của các nguyên tố trong V_2O_5/g -C₃N₄ được phân tích bằng phương pháp phổ XPS. Trên phổ XPS (Hình 2) của C1s trong vật liệu tổ hợp V_2O_5/g -C₃N₄ có ba đỉnh phổ với giá trị năng lượng lần lượt là 284,9; 286,6 và 288,1 eV; đỉnh phổ thứ nhất có cường độ mạnh tại mức năng lượng 284,6 eV được xác định là carbon đối chứng của phép đo và của liên kết C-H, đỉnh phổ tại mức năng lượng 286,6 và 288,1eV ứng với Csp² (N-C=N) trong g-C₃N₄, tuy nhiên giá trị các mức năng lượng này có sự sai khác so với g-C₃N₄ tinh khiết [18].

Hình 2. Phố XPS của C1s, N1s, V2p và O1s trong vật liệu V₂O₅/g-C₃N₄

Phố XPS của N1s có đỉnh phố có cường độ mạnh tại mức năng lượng liên kết 397,8 và 398,9 eV được xác định là của Nsp² (liên kết với hai nguyên tử C lân cận) và đỉnh phổ tại 400,3 eV ứng với Nsp³ (liên kết với ba nguyên tử C lân cận) ứng với cấu tạo của g-C₃N₄ [19, 20]. Trên phổ XPS của O1s, xuất hiện đỉnh phổ cớ năng lượng liên kết ở 531,1 eV ứng với trạng thái O²⁻ trong V₂O₅ và một đỉnh phổ ở 532,2 eV đặc trưng cho nhóm -OH hoặc phân tử nước hấp phụ trên bế mặt vật liệu V₂O₅/g-C₃N₄ [21]. Phổ XPS của V2p xuất hiện các đỉnh phổ tại hai mức năng lượng 517,5 và 524,9 eV đặc trưng cho trạng thái V2p_{3/2} và V2p_{1/2} của V-V₂O₅ trong vật liệu V₂O₅/g-C₃N₄ là V⁵⁺, giá trị này thấp hơn so với trong V₂O₅ tinh khiết [16, 21], điều này có thể do có một sự tương tác giữa V₂O₅ và g-C₃N₄ trong vật liệu V₂O₅/g-C₃N₄.

Phổ IR của V2O5, g-C3N4 và V2O5/g-C3N4 được thể hiên ở Hình 3. Phổ IR của g-C₃N₄ ở Hình 3 cho thấy, có các đỉnh phổ đặc trưng cho các liên kết giữa nitrogen và carbon. Đỉnh phổ ở số sóng 810,1 cm⁻¹ ứng với dao động của liên kết C-N trong vòng thơm của triazin. Các đỉnh phổ có cường độ rất yếu trong khoảng 1458 -1246 cm⁻¹ được quy cho những dao động hóa trị của C-N bên ngoài của vòng thơm. Đỉnh phổ có cường độ rất thấp ở 1636 và 1570 cm⁻¹ đặc trưng cho dao động hóa trị của liên kết C=N. Dải phổ có đỉnh hấp thụ ở 3177 cm⁻¹ có thể là dao động của các amin sơ cấp (melamin) và thứ cấp (melem) [22, 23]. Phổ IR của V₂O₅, xuất hiện một đỉnh khá rõ nét hấp thụ ở số sóng 1004, 788 cm⁻¹ lần lượt đặc trưng cho liên kết V=O và V-O-V [8, 12]. Đối với phố IR của V₂O₅/g-C₃N₄ gần như có các đỉnh phố ứng với V₂O₅ và g-C₃N₄.

Hình 3. Phổ IR của V_2O_5 , g-C₃N₄ và V_2O_5/g -C₃N₄.

Từ phố UV-Vis DRS (Hình 4) của xúc tác V₂O₅ và g-C₃N₄ cho thấy, đều xuất hiện dải phổ xuất phát từ vùng ánh sáng tử ngoại sang vùng ánh sáng khả kiến, nhưng xúc tác V₂O₅ hấp thụ ánh sáng mạnh hơn khi so với g-C₃N₄. Đối với phổ UV-Vis DRS của xúc tác V₂O₅/g-C₃N₄ gần như có bờ hấp thụ ánh sáng vùng khả kiến

mạnh hơn nhiều so với xúc tác $g-C_3N_4$ nhưng yếu hơn V_2O_5 .

Hình 4. Phổ UV-Vis-DRS của V_2O_5 , g- C_3N_4 và V_2O_5/g - C_3N_4 .

Kết quả giá trị E_{bg} của xúc tác V₂O₅, g-C₃N₄ và V₂O₅/g-C₃N₄ thu được dựa vào dữ liệu của phổ UV-Vis DRS (Bảng 1) chỉ ra rằng, giá trị E_{bg} của V₂O₅/g-C₃N₄ (2,19 eV) là gần tương đương với V₂O₅ (2,23 eV). Điều này cho thấy, khi tổ hợp vật liệu V₂O₅ và g-C₃N₄ thì gần như không có sự giảm E_{bg} so với vật liệu đơn có E_{bg} nhỏ hơn. Như vậy, cả ba vật liệu V₂O₅ và g-C₃N₄, V₂O₅/g-C₃N₄ đều có thể hoạt động tốt trong ánh sáng vùng nhìn thấy.

Hình 5. Sự biểu diễn hàm Kubelka-Munk phụ thuộc vào năng lượng hấp thụ ánh sáng của V₂O₅, g-C₃N₄ và V₂O₅/g-C₃N₄.

Bảng 1. Giá trị năng lượng vùng cấm của các vật liệu V₂O₅, g-C₃N₄ và V₂O₅/g-C₃N₄

Vật liệu	E _{bg} (eV)
$g-C_3N_4$	2,75
V_2O_5	2,23
$V_2O_5/g-C_3N_4$	2,19

Để phân tích sự tái kết hợp giữa các điện tử và lỗ trống quang sinh trong các xúc tác V₂O₅, g-C₃N₄ và V₂O₅/g-C₃N₄, phố PL được sử dụng. Kết quả thu được từ phổ PL ở Hình 6 thể hiện sự giảm cường độ đỉnh phố PL rõ rệt từ mẫu xúc tác g-C₃N₄, V₂O₅ đến V₂O₅/g-C₃N₄. Kết quả PL chỉ ra thứ tự tái kết hợp giữa electron và lỗ trống trong xúc các xúc tác giảm lần lượt là g-C₃N₄ > V₂O₅ > V₂O₅/g-C₃N₄. Như vậy, xúc tác V₂O₅/g-C₃N₄ đã hạn chế được sự tái tổ hợp giữa các điện tử và lỗ trống hữu hiệu hơn so với xúc tác g-C₃N₄ và V₂O₅ riêng lẻ trong vùng khảo sát.

6

Hình 6. Phổ quang phát quang của V_2O_5 , g- C_3N_4 và V_2O_5/g - C_3N_4 .

3.2. Hoạt tính quang xúc tác

Để đánh giá hoạt tính của xúc tác V₂O₅, g-C₃N₄ và V₂O₅/g-C₃N₄, kháng sinh TC được sử dụng phân hủy như chất ô nhiễm hữu cơ mô hình. Kết quả thực nghiệm được thể hiện ở Hình 7. Kết quả phân hủy TC ở Hình 7 cho thấy, vật liệu V2O5/g-C3N4 có hoạt tính cao hơn so với g-C₃N₄ và V₂O₅ đơn lẻ. Hiệu suất phân hủy TC tại 180 phút trên g-C₃N₄, V₂O₅ và V₂O₅/g-C₃N₄ lần lượt là 52,34; 55,32 và 82,18%. Như đã biết, khi hạn chế được sự tái tổ hợp giữa các electron và lỗ trống thì khả năng hoạt động quang xúc tác của vật liệu sẽ được gia tăng đáng kế. Điều này có thể được giải thích là khi biến tính V2O5 với g-C3N4 tạo thành vật liệu V2O5/g-C3N4 sẽ tạo ra được sự chuyển dich điên tử theo sơ đồ dang Z. Khi vật liêu V₂O₅/g-C₃N₄ được kích hoạt bằng bức xạ khả kiến, electron của V₂O₅ phân tách khỏi vùng

hóa trị nhảy lên vùng dẫn, khi đó điện tử ở vùng dẫn của V_2O_5 có thể nhảy xuống vùng hóa trị của g-C₃N₄ nên hạn chế được sự tái kết hợp giữa electron - lỗ trống theo dạng Z, kết quả việc tổ hợp hai vật liệu bán dẫn trên cơ sở được đề cập trong nghiên cứu này đã làm giảm được sự tái kết hợp giữa electron và lỗ trống là phù hợp với công bố của nhiều tác giả [12, 13]. Do đó, sự tổ hợp V₂O₅ với g-C₃N₄ đã làm tăng thời gian sống của điện tử và lỗ trống dẫn đến hiệu quả phân hủy TC của xúc tác V₂O₅/g-C₃N₄ tăng lên.

Hình 7. Sự thay đổi C/C₀ của TC phụ thuộc thời gian của xúc tác V_2O_5 , g-C₃N₄ và V_2O_5 /g-C₃N₄.

4. Kết luận

Vật liệu V₂O₅/g-C₃N₄ đã được tổng hợp thành công. V₂O₅/g-C₃N₄ có bờ hấp thụ ánh sáng vùng khả kiến mạnh hơn nhiều so với xúc tác g-C₃N₄ nhưng yếu hơn V₂O₅. Khả năng hạn chế sự tái kết hợp giữa electron-lỗ trống trong vật liệu V₂O₅/g-C₃N₄ là tốt hơn so với V₂O₅ và g-C₃N₄ đơn lẻ. Sự phân hủy TC trên xúc tác V₂O₅/g-C₃N₄ (hiệu suất đạt 82,18%) dưới tác dụng của bức xạ vùng nhìn thấy là cao hơn so với xúc tác V₂O₅ (55,32%) và g-C₃N₄ (52,34%).

Lời cảm ơn

Nghiên cứu này được tài trợ bởi Bộ Khoa học và Công nghệ trong khuôn khổ đề tài cấp Nhà nước, mã số ĐTĐL.CN.33/21.

Tài liệu tham khảo

- [1] J. Feng, M. Cao, L. Wang, X. Ran, B. Xiao, J. Zhu, Z. Liu, X. Xi, G. Feng, R. Li, Ultra-thin DyFeO₃/g-C₃N₄ p-n Heterojunctions for Highly Efficient Photo-Fenton Removal of Oxytetracycline and Antibacterial Activity, Journal of Alloys and Compounds, Vol. 939, 2023, pp. 168789.
- [2] S. Liu, C. Wang, Y. Song, B. Yan, B. Ai, K. Pan, L. Zhang, Fabrication of a Hybrid Phase TiO₂/g-C₃N₄ Heterojunction Composite with Enhanced Adsorption and Photocatalytic Degradation of MB under Vsible Light, New J. Chem., Vol. 47, 2023, pp. 8170-8181.
- [3] M. L. Matias, A. S. R. Machado, J. Rodrigues, T. Calmeiro, J. Deuermeier, A. Pimentel, E. Fortunato, R. Martins, D. Nunes, Microwave Synthesis of Visible-Light-Activated g-C₃N₄/TiO₂ Photocatalysts, Nanomaterials, Vol. 13, No. 6, 2023, pp. 1090.
- [4] H. Khan, I. H. Lone, S. E. Lofland, K. V. Ramanujachary, T. Ahmad, Exploiting Multiferroicity of TbFeO₃ Nanoparticles for Hydrogen Generation through Photo/Electro/Photoelectro-catalytic Water Splitting, International Journal of Hydrogen Energy, Vol. 48, No. 14, 2023, pp. 5493-5505.
- [5] M. Baladi, M. Amiri, M. Amirinezhad, W. K. Abdulsahib, F. Pishgouii, Z. Golshani, M. S. Niasari, Green Synthesis and Characterization of Terbium Orthoferrite Nanoparticles Decorated with g-C₃N₄ for Antiproliferative Activity Against Human Cancer Cell Lines (Glioblastoma, and Neuroblastoma), Arabian Journal of Chemistry, Vol. 16, No. 7, 2023, pp. 104841.
- [6] P. Hu, P. Hu, T. D. Vu, M. Li, S. Wang, Y. Ke, X. Zeng, L. Mai, Y. Long, Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications, Chem. Rev., Vol. 123, No. 8, 2023, pp. 4353-4415.
- [7] Y. S. Thakur, A. D. Acharya, Bhawna, B. Singh, Preparation and Characterization of Vanadium Oxide (V₂O₅) Ssheet Like Nanostructure, AIP Conf. Proc., Vol. 2800, 2023, pp. 020051.
- [8] R. T. Rasheed, H. S. Mansoor, T. A. Abdullah, T. Juzsakova, N. A. Jammal, A. D. Salman, R. R. A. Shaikhly, P. C. Le, E. Domokos, T. A. Abdulla, Synthesis, Characterization of V₂O₅ Nanoparticles and Determination of Catalase Mimetic Activity by New Colorimetric Method, Journal of Thermal

Analysis and Calorimetry, Vol. 145, 2021, pp. 297-307.

- [9] Y. Zou, C. Wang, H. Chen, H. Ji, Q. Zhu, W. Yang, W. Zhu, Scalable and Facile Synthesis of V₂O₅ Nanoparticles Via Ball Milling for Improved Aerobic Oxidative Desulfurization, Green Energy & Environment, Vol. 6, No. 2, 2021, pp. 169-175.
- [10] S. V. P. Vattikuti, P. A. K. Reddy, J. Shim, Byon, Synthesis of Vanadium-pentoxide-Supported Graphitic Carbon Nitride Heterostructure and Studied their Hydrogen Evolution Activity under Solar Light, Journal of Materials Science: Materials in Electronics, Vol. 29, No. 6, 2018.
- [11] V. V. Pham, H. H. Tran, T. M. Cao, V₂O₅ Nanorod-Loaded g-C₃N₄ Sheets for Efficient Photocatalytic Removal of NO and Minimal NO₂ Yield under Visible Light, Energy Fuels, Vol. 37, No. 17, 2023, pp. 13241-13249.
- [12] Y. N. Zang, S. S. Yang, J. Ding, S. Y. Zhao, C. X. Chen, L. He, N. Q. Ren, A Biochar-promoted V₂O₅/g-C₃N₄ Z-Scheme Heterostructure for Enhanced Simulated Solar Lightdriven Photocatalytic Activity, RSC Adv., Vol. 11, 2021, pp. 15106.
- [13] X. Zhang, X. Jia, P. Duan, R. Xia, N. Zhang, B. Cheng, Y. Zhang, V₂O₅/P-g-C₃N₄ Z-scheme Enhanced Heterogeneous Photocatalytic Removal of Methyl Orange from Water under Visible Light Irradiation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 608, 2021, pp. 125580-125597.
- [14] S. Vignesh, S. Suganthi, M. Srinivasan, A. Tamilmani, J. K. Sundar, S. Gedi, B. Palanivel, S. F. Shaikh, M. Ubaidullah, Md. K. Raza, Investigation of Heterojunction Between α-Fe₂O₃/V₂O₅ and g-C₃N₄ Ternary Nanocomposites for Upgraded Photo-degradation Performance of Mixed Pollutants: Efficient dual Z-scheme Mechanism, Journal of Alloys and Compounds, Vol. 902, 2022, pp. 163705.
- [15] A. Kumar, S. K. Sharma, G. Sharma, M. Naushad, F. J. Stadler, CeO₂/g-C₃N₄/V₂O₅ Ternary Nano Hetero-structures Decorated with CQDs for Enhanced Photo-Reduction Capabilities under Different Light Sources: Dual Z-scheme Mechanism, Journal of Alloys and Compounds, Vol. 838, 2020, pp. 155692.
- [16] N. Asim, S. Radiman, M. A. Yarmo, M. S. Banaye Golriz, Vanadium Pentoxide: Synthesis and Characterization of Nanorod and Nanoparticle V₂O₅ Using CTAB Micelle Solution, Microporous Mesoporous Mater, Vol. 120, 2009, pp. 397-401.

- [17] S. Sun, J. Li, J. Cui, X. Gou, Q. Yang, S. Liang, J. Zhang, Constructing Oxygen-doped g-C₃N₄ Nanosheets with an Enlarged Conductive Band Edge for Enhanced Visible-light-driven Hydrogen Evolution, Inorganic Chemistry Frontiers, Vol. 5, No. 7, 2018, pp. 1721-1727.
- [18] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Che, Simple Pyrolysis of Urea into Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic Activity, Journal of Materials Chemistry, Vol. 21, 2011, pp. 14398.
- [19] L. Jia, H. Wang, D. Dhawale, C. Anand, M. A. Wahab, Q. Ji, A. Vinu, Highly Ordered Macro-Mesoporous Carbon Nitride Film for Selective Detection of Acidic/basic Molecules, Chem. Commun., Vol. 50, No. 45, 2014, pp. 5976-5979.
- [20] J. R. Zhang, Y. Ma, S. Y. Wang, J. Ding, B. Gao, E. Kan, W. Hua, Accurate K-edge X-ray Photoelectron and Absorption Spectra of g-C₃N₄ Nanosheets by First-principles Simulations and

Reinterpretations, Phys. Chem. Chem. Phys., Vol. 21, 2019, pp. 22819-22830.

- [21] Shawky, S. M. Albukhari, M. S. Amin, A. I. Zaki, Mesoporous V₂O₅/g-C₃N₄ Nanocomposites for Promoted Mercury (II) Ions Reduction Under Visible Light, Journal of Inorganic and Organometallic Polymers and Materials, Vol. 31, No. 11, 2021, pp. 4209-4221.
- [22] Y. Wang, X. Wang, M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angewandte Chemie International Edition, Vol. 51, 2012, pp. 68-89.
- [23] S. Zuluaga, L. H. Liu, N. Shafiq, S. M. Rupich, J. F. Veyan, Y. J. Chabal T. Thonhauser, Structural Band-gap Tuning in g-C₃N₄, Physical Chemistry Chemical Physics, Vol. 17, No. 2, 2015, pp. 957-962.