Word formation in the cardinal number systems across languages (Mathematical problems in numbers)

Hoang Thi Chau*
College of Sociol Sciences and Humanities, VNU 336 Nguyen Trai, Thanh Xuan, Hanoi. Vietnam

Received 15 December 2009

Abstract

Absiract. The cardinal number system is addressed in this paper as a small yet typical sign system in its larger sign super-system - language. The bifaceted nature of signs is clearly demonsirated: most numbers have double meanings, one is structural while the other is lexical. For instance, in Vietnamese, the number "ferty four" lexically denotes "the next number after 43 in natural number chains", and structurally means $4 \times 10+4$. Meanwhile, in French, number " 80 " is quatre-vingt (4×20) with the lexical meaning of "eighty" while it structurally means " 4×20 "; and number " 70 " soixam-dix has the structure " $60+10$ ".

Deep under the addition and multiplication problems mentioned above are mathematical thoughts and languages of these nations: the Viennamese is based on the decimal numeration while the French use the degisemal numeration.

The dala used in this analysis are restricted within languages of ethnic minorities in Vietnam and iwo major language families in Southeast Asia, namely Austroasiatic and Austronesian, or to be more precise, Auslro-Tai, which are closely related to the Vietnamese language. In order to ciearly identify features of word formation in the numbers of isolating, analytic languages in Vielnam and Southeast Asia, comparative and contrastive analyses have been made against the number systems of Indo-European languages representative of the synthetic typology and familiar to us, including French, English and German, before the following conclusions are made: 1. Numbers are the most basic words among the basic, i.e. the most ancient. The number syslem of each nation has been developed through a long process of thousands of years. The 10 basic words have transformed into 100 others by employing one or more of these: morphological change, affixation, word combination, and word order change. The number systems are highly systematic with fixed struclure. However, partial or total borrowings of an entire system are still possible. 2. This is an initial structural investigation of the linguistic form of the numeration systems with a view to identifying the sleps in the formation of language and thought in a narrow sense. 3. The investigation of the number systems in different European and Asian regions, across various language families, helps reveal their universalities as well as typicalities in their language formulation and development process.

The cardinal number system is addressed in this paper as a small yet typical sign system in
its larger sign super-system - language. The hifaceted nature of signs is clearly demonsirated:
most numbers have double meanings, one is siructural ${ }^{(1)}$ while the other is lexical. For instance:

- In Vieinamese, the number "forty four" lexically denotes "the next number after 43 in natural number chains", and structurally means $4 \times 10+4$ (with the multiplication " x " and the plus "+" signs lef implieit). Actually the multiplication " x " has been represented in "muroi" (with a level tone), which differs from "mười" (1en, with a falling tone): "mười hốn" $(14)=10+4$ vs. "bốn mươi" $(40)=4 \times 10$.
- In French, number "80" is quatre-vingt (4×20) with the lexical meaning of "eighty" while it structurally means " 4×20 "; and number " 70 " soirant-dix has the structure " $60+10$ "
- In Pazeh, an indigenous language in Taiwan, number " 7 " is formed by comhining the two words xaseb - "5" and dusa - "2" together as xasebidusa (5+2). Their ancestors left Taiwan around 6,000 years ago for the Pacific islands which have become present nations of the Philippines, Indonesia, Malaysia, Brunei, New Zealand, elc. whose languages are commonly referred to as Malayo-Polynesian and, on a larger scale, Ausironesian. In these languages, rasehidusa has been shortened as "pitu. [1, p.415-422]

Deep under the addition and multiplication prohlems mentioned above are mathematical thoughts and languages of these nations. The Vietnamese mathematical thought is expressed in "mưoi", "mươi", "một chupc" (one ten) on the decimal numeration basis while the French use the degisemal numeration ($80=4 \times 20$) and yet the Taiwanese count their fingers ${ }^{(2)}$

[^0]For these reasons, the paper is entitled "Word formation in the cardinal number systems" or "Marhematical problems in numbers".

The systemic feature and national characteristics are also clearly demonstrated, even when the number system is horrowed from another language. The number systems of Thai languages such as Thai in Thailand, Laotian. Thai in Yunnan, China, Thai in Northwestem Vietnam, Tay-Nung in Northeastern Vietnam, etc., all were borrowed from ancient Sino. though having their own peculiarities (which will be analyzed hereafter). The listeners, therefore, can recognize the numbers of Thailand's people as distinctive from those of the Nung people in Phan Sinh.

Apart from the number systems in all languages, there is a supra-national, supralingual system of digits, usually referred to as the Arabic digits, which serves as a major, advantageous source of reference and contrast for our research.

The data used in this analysis are restricted within languages of ethnic minorities in Vietnam and two major language families in Southeasi Asia, namely Austroasiatic and Austronesian, or to he more precise, Austro-Tai, which are closely related to the Vietnamese language. In order to clearly identify features of word formation in the numbers of isolating. analyic languages in Vienam and Southeast Asia, comparative and conirastive analyses have been made against the number systems of 1ndoEuropean languages representative of the synthetic typology and familiar io us, including French, English and German, hefore conclusions are made. Finally, through the comparison of the number systems across modern languages over a large space, the paper

[^1]secks to enable the readers to visualize their zvolution from about 10,000 years ago to 1,000 years ago. and their relations of ancient origin

I. Ausiro-Tai language family

1.1. Thäi Branch

As has heen mentioned, all languages of the Thai branch did not preserve their primitive lumher systems; instead, they borrowed the fumber system of ancient Sino over 1,000 years 1go, prior to the migration of the Thai people in heir soulhward expansion to as far as Malay jeninsula and westward to India so that they zould occupy a vast territory over the presentlay Southeast Asia.

At first glance, the number systems of the Thai, Tay-Nung in Vietnam and in Thailand icem similar, but a closer look reveals several shonetic, lexical and word combination differences across these three systems.

1.1.1. Phonetic differences

- Due io phonetic asystemic transformation:
sl/s (Tay-Nung / Thai, Thailand: slong. tam, sli/song, sam, si - "2", "3". "4")
nh/j (Thai / Thailand: nhi / ji - "2")
h/r (Thai / Thailand: hoi / rói - "100")
p/ph (Thai / Thailand: pằn /phan - " 1000 ")
Due to word combination:
Thai: sip-êt>met ("ll")
song-sip > são ("20")
1.1.2. Lexical differences

Use of different synonyms

	Thai	Tay - Nung	Thailand
" 100 "	họi nừng	nâng pac	nưng rói
" 20 "	são	nhi slip	ji sip
" 22 "	såo song	nhi slong	ji sip song

c.e. song and nhi (both meaning "2"); meng êt -"l".

1.1.3. Differences in word combination

Due to Vietnamese influence on Thai and Tay-Nung, there are simplified combinations, e.g.

	Viet	Thai	Tay-Nung	
"25"	hăm lăm	så̊ hà	nhi	ji sip ha
"140"	trâm tur		pac sli	nung roi sis

1.2. Kadai branch

In both Vietnam and China, the languages are called Kadai as their speakers resided in an interwoven manner among other ethnic groups like Thai, Tay, Nung, Hmong, Yan, which increasingly narrowed down their areas of use and even posed them the threat of extinction. Normally, the old Laha people speak the Laha language, while younger generalions have very poor proficiency in their mother tongue which is spoken only at home. For social communication, Thai and Vietnamese languages are used. In the population records of Lan Cai, Yen Rai provinces, several villages of the I achi people are listed, but when we arrived there, we found no one spcaking the Lachi language. Instead, the locals use Tay or Nung and the popular (i.e. Vietnamesc) language in their day to day communication. However, wherever the mother tongue is preserved, its number system remains, including interesting cases of language mix like the number system of Laha

	Laha	Pupedo	Lachi
"1"	căm	cja	cay
"2"	sa	sê	fu
"3"	Th/aw	${ }^{\text {taxw }}$	1 e
"4"	pa	pé	pu
"5"	he ma	ma	m
"6"	Hok duâm	(ma) ¢åm	na
"7"	cet to	(ma)tu	te
"8"	pet mahu	(ma)zi	br
"9"	daw sawa	(ma)sja	Iju
" 10 "	Pat	$\mathrm{p} \wedge \mathrm{t}$	pe

The table above shows that numbers from " 1 " to "4" are monosyllabic Laha words, and numbers from " 5 " to " 10 " are disyllabic, with the former syllable being Thai word (actually ancient Sino) and the latter its synonym in Laha. This type of parallel or semantico-repetitive compounds (with two synonymous words of different origins) is very commonly encountered in Southeast Asian languages, like chó má (dog dog - Viet and Thai), tre pheo (hambon hamboo - Viet and Muong)

Despite the number system being mixed, the separation of Sino and Thai elements reveals that Laha numbers are closer to the etymological numbers of Proto MalayoPolynesian (PMP); Pupeo number system comes next, and last Lachi. More surprisingly, the phonetic correspondence in Laha numbers with PMP $^{(3)}$ is even clearer compared to Austronesian languages in Vietnam (e.g. Cham, Ede, Giarai, etc.)

It is probahly not a mere coincidence when mahu - number 8 in Laha, ($m \sigma$) sja - number 9 in Pupen are very similar to mahal - number 8 and (me)siya - number 9 in Papora language in Taiwan. [1, p.414].

It should be added that the word "hand" in all Tai-Kadai languages is a homophone of number 5 in these languages and originated from proto Malayo-Polynesian
'lima > ma, mù, m

In most Taiwanese languages at present, lima - number 5 has replaced an ancient word *RaCep - number 5 which used to form the numhers from 6 to $9: 5+1 ; 5+2 ; 5+3 ; 5+4$ [1, p.414-423] and later they were shortened as PMP numbers: *enem - " 6 ", "pitu - "7", "walu " 8 ", and "siwa - " 9 "

[^2]Similarities in the number systems of Kadai languages in Vietnam and Malayo-Polynesian languages support Austronesian researchers' hypothesis on the genetic relationship between these two language groups and Taiwanese indigenous languages, and the migration path of the Tai-Kadai ancestors might have crossed Taiwan before their arrival in the mainland of present-day Southeaslern China and Northeastern Vietnam about 6,000 ycars ago [1, 438-439]. This is also the date of the two archeological sites of Da But and Quynh Van in Thanh Hoa and Nghe An provinces respectively. Was this possibly the landing site of ancient Tai-Kadai people? They had lived on hunting and gathering for millennia of years there, leaving numerous dumps of shells as shell hills and mountains at present [2, p.8-9].

1. 3. Malıyo-Polynesian branch in Vietnam

Ancestors of the Cham pcople left Taiwan almost at the same time with the Tai-Kadai, yet on another direction to the Oceanic continent and stayed there for thousands of years, developing from hunting and gathering trihes to agricultural communities before making their way to Vietnam.

Sa Huynh Culture was discovered on the Central Coastal plains to Southeastern Vietnam, which dated back to around 500R.C.E and was identified as belonging to highly-developed agricultural inhabitants. What were huried together with them in their jar tombs include iron and copper arms and gold jewelries made with highly sophisticated techniques. "Those were the tribes which formed the ancient kingdom of Champa at the beginning of our Common Era" [3-5].

Hereafier is the comparison of the number systems in Malayo-Polynesian languages in Vietnam.

	PMP ${ }^{(1)}$	$\text { Fast Chăm }{ }^{(5)}$	Wess Chămı ${ }^{(6)}$	Chru	Roglai	Ède	Giarai
$\cdots 1 "$	*isa	Iha	sa	sa	sa	sa	sa, ha
$\cdots 2$	* dusa	Ina	doa	dua	dua	dua	dua
"3"	*ielu	klow	klau	klou	tos	1lào	kla
"4"	* sepal	pa'	pak	pà	pàq	pa	คã
"5"	* lima	limu	lamu	Ioma	luma	Ema	(ra)ma
"6"	*enem	กăm	naxtm	nam	nům	nåm	nåm
$\cdots 7$	${ }^{\text {Ppitu }}$	taçuk	1ajuh	tojuh	ijjuh	kjuh	(to) juh
"g"	* walu	dalipã	lapăn	tolpan	lapat	sapăn	čo叩ăn
"9"	* siwa	1halipă	camlan	solpan	salapat	duapăn	dua (ro)pan
$\cdots 10 "$	*puluq	pluh	ha pluh	spluk	sapluh	pluh	pluh

The above table shows that in comparison with the etymological form of MalayoPolynesian languages (PMP), the number systems in Cham, Ede, Giarai. Chru, Roglai, cte., in Vietnam do have similar phonetic forms from I 106 and 10 with a clear inclination toward monosyllabic forms. Number 7-tojuh is identical among all the languages under comparison (with certain variants of the vowels $\mathrm{i} / \mathrm{u} / 0 / \mathrm{a}$ in their proto-syllables) whose origin is yel unknown. Numbers 8 and 9 are formed by combining numbers I and 2 , and this combination can only he explained by such addition, substraction and multiplication as has been seen in Taiwanese languages. It might also have ween the substraction: $8=10-2 ; 9=10-1$.

In the compared languages. number 1 is tha. $s a, s \sigma$, number 2 is dua, da, ta. Yet number 10 in the table shows up as pluh, which might have been a new form in substitution of an older one. Number 10 - labatan in Ketagalan in Northeastem Taiwan ${ }^{171}$ is closer to the latter par of numbers 8 and 9 of the compared languages ahove lahatan > lapan, lipan, pon, pän, etc.

It is possible 10 divide the compared languages into 3 groups:

[^3]1.31. East Cham, West Cham, Chru and Maldy group with numbers 8 and $2(d a, t a, t o)$ (numbers 9 and 1 tha, sa, s $s \sigma$). It can he assumed that these are resulis of substraction: $10-1=9$; $10-2=8$

	" 8 "	"g"
East Chă̊m	dalipån	thalipăn
West Chăm	tapăn	samlăn
Chru	tnlpăn	sculpăn
Malay	lapan	somilan

1.3.2. Ede and Giarai Group uses these numbers in the reverse order, as number 1 in forming number 8 , and number 2 in forming number 9 . This could be temporarily explained that the Ede and Giarai people, when borrowing numbers 8 and 9 from the Cham, were confused, without any knowledge that numbers 2 and 1 were actually inside numbers 8 and 9 .

	$" 8 "$	$" 9 "$
Êdê	sapăn	duapăn
Giarai	copăn	dualăn, dua rơpăñ

1.3.3. Roglai language:

" 8 "	" $9 "$	$" 10 "$	$" 11 "$
lapat	salapat	sa pluh	sa pluh sa
2×4	$1+8$	one ten	one ten one

We hypothesize that number 8 -lapat could have resulted from the combination of numbers 2 and 4 with a multiplication: *dua *sepat (2×4 $=8$). Number 9 is $1+8$: salapat.

The four numbers above represent two different ways of thinking ahout the number system:

Number 8 - lapat (2x4), 9 - salapat ($1+8$): counting the fingers, a more ancient way.

10 - sa pluh (one ten), 11 - sa pluh sa (one ten one): based on the decimal system, which was newer, more popular, has been in existence until now and built up the number system to infinity. A closer investigation can show us the clear mismatch in the two combined parts in Roglai number system. The mismatch lies in numher 9 - salapat and number 10 - sa pluh. Salapat - "9" implies addition (1+8). If such pattern had continued, sa pluh would have been $1+10=11$. Yet, in reality, sa pluh - "one ten" lies in the upper part of the system, was constructed later and aligned with dua pluh"two ten", tlou pluh - "three ten", etc.

Next, we can see möt chuc (one ten) used in place of 'muoci' (ten) is a characteristic of the
number systems in Mon-Khmer language which emphasizes the decimal system - a advance in numbering.

2. Austroasiatic Family and Mon-Khme Branch in Vietnam

The number systems of Mon-Khme languages in Vietnam were also huilt upos those two mathematical thoughts. Khme numbers typify finger-counting, while other use the decimal system. However, the number are quite identical across all these languages.

2.1. Numbers from 1 to 5

Numbers from " 1 " to " 5 " display higl identicality across all the language groups, witl the exception of Katu as in number 5-söng.

Branch	Khmer	Bahnar South	Bahnar North	Kalu	Viet-Muang	
Number	Khmer	Chrau	Romgao	Bru	Ruc	Việt
"!"	muôi	mu6̂i	moi	muối	mộc	một
"2"	pi	var	bar	bar	hal	hai/ vài
"3"	hây	pe	pi	pái	P9	ba
"4"	buôn	puón	pú	pỗ	pon	bồn
"5"	pram	prăm	podam	s\%ักg	dam	ก ${ }^{\text {m m }}$

2.2. Numbers from 6 to 9

On the basis of the numbers from 6 to 9 , it is possible to categorize the following:

- Khmer branch: combining numbers
- Bahnar North: had proto syllable
- Bahnar South and Viet-Muong: had initial consonant clusters, very similar to Vietnamese language.

It is a complete difference in Katu hranch

Branch	Khmer	Bahnar North	Bahnar South	Viet-Muong	Katu	
Numbers	Khmer	Rongao	Chrau	Ruc	Việt	Bru
"6"	prâm muôi	todrú	prau	phrau ${ }^{\text {² }}$	sáu	tapoâ
"7"	prâm pi	10paith	poh	paj ${ }^{4}$	bay	tapul
" 8 "	prăm bây	toham	pham	tham	tåm	takual
"9"	pråm buถ̂n	tochīn	sum	chin ${ }^{3}$	chin	Takêh
"10"	dóp	mồ jâat	mât	muoj ${ }^{2}$	muài	muôi chur

These number ranges are ordered from lefi to right, reflecting phonctical changes from ancient to modern time

2.3. Number 10-"one ten" in Món - Khmer languages

Number 10, with the cxception of đóp in Khmer, and "mươi" in Viet-Muong group, is the same "muôi chit" ("one ten") in all other languages with such phoneric variants as:
muói chill murri chur / muì chat...
möi jĕt / mö̀ jât moi jor / màt...
"One ten" is a critical number of the decimal system, marking a novel progress from finger counting, and forming the basis for continuation:

In Bru for instance:
" II": muồ chut la muổi (one ten and one)
" 12 ": muôi chnt la bar (one ten and two)
" 20 ": bar char (two ten)
Also 'one ten' is used as a basis to count larger numbers like 'one hundred, one thousand', and 'one million". In other languages, Indo-European ones, for example, just 'hundred, thousand, million', etc., are used without the preceding word 'one'.

In Chrau language (Bahnar South), " 10 " is mât, shontened from muôi jât - "one ten"; "12" is mât var; but " 20 " is var jăt, " 30 " is pe jäa \{6, p.76-77]. It is possible to hypothesize that in Vietnamese in the past, " 10 " was mrooi chât/jât, which was repeated in various combinations 11 (one ten and one), 12 (one ten and two), etc., and finally reduced to only two words - the initial and the final ones; "muroi" stands at the front to bear the lexical meaning of the whole combination and rakes on a new meaning 'one ten: This is similar to the lexical semantic change of "đun" and "thồi" to "nấu" in modern Vietnamese:
"thồi hira nẩu com"> "thởi com":
"thồi" changed its meaning into "nốu"
blow fire boil rice > blow rice
"Cook rice."
"dun củi náu mrớc" > "dum nước": "dun" changed its meaning into "nầu"
push wood boil water > push water
"boil water."
Today, electricity is used to cook rice and boil water, but the language remains "thổi cơm" and "đun nước".

Forming numbers with addition and multiplication is differentiated in Vietnamese by changing the tones and word orders:

mười hai mười ba	mừ̀i bốn	hai mươi	ba mươi	
ten two	ten three	Ien four	two ten	three ten
$10+2$	$10+3$	$10+4$	2×10	3×10

or by phonetical change, reduction or blending:
"hai merril" > "hăm"; "ba mıroi" > "băm"

hăm mốt	båm hai hâ̆m lăm/nhăm bốn tur		
twenty one	thirty two	twenty five	forty four
$20+1$	$30+2$	$20+5$	$40+4$

and "một trảm tu"" (one hundred four - 140) distinct from "một trăm linh bốn" (one hundred and four-104).

These investigations reveal that word formation in the number systems in Vietnamese as well as other isolating languages does not only involve the combination of word and word order change, as we have so far believed, but also phonetical transformation similar to morphological change of Indo-European languages, and this phonetical change has been used in a very flexible way.

2.4. Khmer numbers

Khmer number system is a perfect model of the combination of finger counting and the decimal system, of basic Khmer words and loans from ancient Sino. It is interesting that
ancient Sino borrowings are used as foundation for upper orders of the decimal system, and function as the basic word in word formation. What were borrowed were the materials io huild up Khoner number system, which differs from Thai languages that berroued the whole ancient Sino number system.

The use of alien loan words to make the "ten" like sam säp - " 30 ", se saip - " 40 " would have resulted in their loss of word-forming meaning, leaving only the lexical one, i.c. total elimination of multiplication (3×10), which leaves only the result (30). The entire system merely uses simple addition, as simple as word combination. For instance, sam saip muôi "31" (three ien - one). It suffices for the user just to add the 'ten' digit to the unit digits in Khmer language in count till $100^{1 / 3 \mid}$

đóp	" 10 "	mûi	"1"	móphey muôi $=$
môphey	"20"	pí	"2"	"21"
sam sàp	"30"	hây	"3"	sam säp huoin
se såp	"40"	buôn	"4"	- "34"
ha sâp	-50"	pråm	"5"	se sâp prăm
hót sâp	-60"	prăm muôi	"6" $(5+1)$	
chèl sâp	"70"	prâm pi	"7" ($5+2$)	$\text { bay }=" 58 "$
pét sáp	"80"	prâm báy	" (5+3)	houi saip pram
kàu sâp	"90"	pramm buôn	"9"(5+4)	buesn = "69"
muôi rai	" 100			

Another comparison of the numbers from 1 to 100 in Indo-European languages can provide us with an impressive and comprehensive view of the formation and content of the language substance.

3. Number systems in Indo-European languages

3.1. The following table can provide a useful comparison of the numbers less than 10 , over 10

[^4]and tens in French. English, German an Vielnamese:

firench	3 3rois	4 quatre	5. cinq
	13.treize	14.quatore	15.quinze
	30. trente	40.quarante	socinquante
English	3 Shree	4. four	$5 . f i v e$
	13. shirleen	14.fourieen	15 fifieen
	30.shiry	40. forty	sofifty
German	3. drei	4 4.vier	5. Oünf
	13. dreizehn	14.vierzehal	15.tünfzehr
	30. dreizig	40.vicrzip	50.funfzig
Vienamese	$3 . \mathrm{ba}$	4.bón	5.nâm
	13.muròi ha	14 murời bốn	$15 . \mathrm{murò} \mathrm{i}$ lăm
	30.ha muri	40. bên murai	50.năm murai

3.2. Through the presented examples, it i possihle to conclude as follows

In French and all the ihree Indo-European languages under comparison, the numbers les: than 10 are common roots, while the number: above 10 and the 'tens' are derivatives in boll ways: morphological change and suffixation.
c.g. $\quad \begin{array}{r}\text { Irois }> \\ \text { treize } \\ \text { trente }\end{array}$

English and German mosily use work combination, with slight phonctical clange liks "mườ" and "muori" in Vietnamese. In addition Vietnamese changes the word orders, following the orders of the number, i.e. the unit stand: afier the ten.

"13"	murbi ba	thir1een	dreizehn
$" 30 "$	Ba muroi	thirty	dreizig

3.3. Apart from the afore-mentiones similarities, the compared number systems shou the following differences:
3.3.). In German. the order of the ode numbers above 10 (from 21 10 99) is reversed the unit is place before the ten
" 21 " - ein und zwanzig (one and twenty)
"99" - newn und neunsig (nine and ninety)
3.1.2 In French, the numbers less than 70 re formed on the basis of the decimal umeration, while those above 70 use the igesimal numeration:
"60)" -soixante (sixty)
-70"- soixame-dix (sivtr-ten)
" 71 " - soixante-onee (sixty-eleven)
"80" - quatre-vingt (four-fwenty)
"90) - quatre-vingt-dix (four-twenty-ten)
" 99 " - quatre-vingt-dix-neuf (four-fwenty'-('h-nine)

Such uniqueness and originality of the jerman and French number systems were uriginated from the ancient language of Celtic lass, particularly Gauls ${ }^{(10)}$, the language of the ndigennus inhabitants who used to dwell upon he territory of present-day France and Germany housands of years B.C.E. urtil the Roman impire expanded to all over Europe.
3.1. The Gaul number system is wonderful :vidence which enables us to visualise a pattern or building up the numbers from 1 io 100 using he degisemal numeration, which is carried out rder by order like this:

Order 1: Use 10 basic numbers, just like ther Indo-European languages:

1. un
2. dau 3. tri
3. pedwar 5. pump
4. chwech 7. saith 8. wyth 9
5. naw $10 . \mathrm{deg}$

Order 2: Combine numbers to make 11 to 15 in a consistent manner throughout the system: the basic number 10 - deg always assumes the final position.
" $1 /$ " - undeg (one ten)

- $/ 2$ " - daudeg (two ten)...
" 15 "- pumtheg (five ten) (pd>th)

[^5]Order 3: Form numbers 16 to 19 on the basis of 15
"16" - un ar bymbheg fone and fifteen. $1+15)(p>b)$
"19" - pectwar ar bymheg (four and fifteen. + +15)

Order f: Stan to build up numbers using the degisemal numeration, taking 20 as the most basic number for the whole system: "20" ugain (changed into wingt in French). From now on, ugain always takes the final position, except for number 50 . The next basic numbers include:
$" 40^{\prime \prime}$ - deugain (two - two ten, 2×20)
" 60° - trigain (three - two ten. 3×20)
" $80^{\prime \prime}$ - pechar ugain (four - two ten, $+\times 20$)

Between these landmark numbers are combinations with I to 19.
e.g. "21" - un ar hugain (one and two ten. $1+20$)
"22" - dau ar hugain (two and two ten, $2+20$)

This inverse order was imported into German to form numbers from 21 to 99.
e.g. " $2 I$ " - ein und zwanzig (one and Nent: $1+20$)
"99" - neun und neuntig (nine and ninety. $9+90$)

Numbers 30,70 and 90 are not marked basic numbers like those in the decimal numeration; rather, they are merely ordinary numbers, e.g. in Gauls.
" 30 " - deg ar hugain (ten and two ten. $10+20$)
" 70 " - deg a trigain (ten and three - two ten, $10+3 \times 20$)
"90"- deg a pectwar ugain (ten and fournwo ten, $10+4 \times 20$) in French:
"70"- soixcme-dix (sixty-ten, $60+10$)
" 71 " - soixante-onze (sixty-eleven, $60+11$)
"90" - quatre-vingt-dix (four-twenty-ten. $4 \times 20+10)$
"91" - quatre-vingt-onze (four-fwentyeleven, $4 \times 20+11)$

It is clear that French uses the degisemal numeration of the Gauls 10 build up the latter part of their number system (from 70 to 99) (see 3.2.2).

From number 100 - cant, a common numher among Indo-European languages, the Gauls people created number 50 - hanner cant, i.c. $1 / 2$ of 100 . This is probably a new number 50 in substitution for an older one formed by using the degisemal numeration.

3.5. The universality of the number system structure

3.5.1. The siructure of the Gauls numeration system enables us to visualize an impressive five-storey ancient castlc, with the foundation and upper floors, which diflers from modern squarish high-rise blocks, i.e. the decimal system which is becoming increasingly popular and allows one to count until infinity thanks to its simplicity and convenience in massive assemblies. The structure of the degisemal numeration just examined in Gauls is selfevident with regards to its age. It slarts from counting parts of the human body: the two hands, and then the 1wo feet. Such counting may possibly have existed long among the primitive tribes living on hunting and gathering. When humans knew how 10 domesticate animals and did agricultural farming, the number systems were topped up with higher floors with various ways of thinking on the basis of degisemal or binary numeration in different localities, as expressed in their languages.
3.5.2. The number systems in Austroasiatic and Austronesian (Austro-Tai) families also display similar structure in the foundation finger counts. In Austroasiatic languages. only

Klimer retains this finger-counl manner number 6 - prăm muōi (5+1); "7" - prăm, (5+2); "8" - prãm hắy ($5+3$); "9" - pràm buć $(5+4)$ as a kind of muscum. In other Mor Khmer languages, they are replaced wit numbers "six, seven, eight" and "nine", formin 10 basic numbers which serve as the foundatio for the decimal numeration, and a special forn is given to number 10: muôi chit (one ten).
3.5.3. Austro-Tai languages build up the numbers in two ways:

- Languages of the Thai branch borrowe the numbers from ancient Sino which used th decimal numeration.

Kadai and Molayo-Polynesian language possess a primitive number system: finger coun $(6=5+1, \ldots, 9=5+4)$, which is still relained it several indigenous languages in Taiwan. Th conlracted results of this addition problem $(5+1$ $5+2,5+3,5+4$) are the four numbers " 6 " *enem; "7" - *pitu; "8" - "walu; "9" - *siwa it PMP, which are being used in the remaining Taiwanese languages and present-day Kada and Malayo-Polynesian languages. Then thi system continues 10 huild upon the decima system. Kadai and Malayo-Polynesiay languages in Viennam also preserve such trace: in ils own way.

In sum, the differences amone Ausiroasiatic and Austronesian languages in the bases of the numbers lic in that Austronesian use the contracted forms of old numbers whils Austroasiatic use new replacements.

4. Conclusion

1. Numbers are the most basic words among the basic, i.e. the most ancient. The number system of each nation has heen developec through a long process of thousands of years The 10 basic words have transformed into 10C others in the following manners

- Morphological change
- Aflixation
- Word combination
- Word order change

The number systems are highly systematic ith fixed structure. However, partial or total orrowings of an entire system are still possible.
2. This is an initial structural investigation f the linguistie form of the numeration syslems ith a view to identifying the steps in the srmation of language and thought in a narrow ense.
3. The investigation of the number systems 1 different Furopean and Asian regions, across arious languagé families, helps reveal their niversalities as well as typicalities in their inguage formulation and development process.

teferences

[1] Reinecke, A., Nguyển Chiều, Lâm Thị Mỵ Dung, "Neu' Findings of Sa Huynh Culture", Linden Son, 2002
[2] Thomas, D., Thò Sàng Luc, "Chrau Vocabulary", SIL 1966
[3] Cohen. P., "Jeh Vocahulary", SIL, 1970.
[4] Heine - Geldem, R., "Primitive Geographical Tertiory and the Earliest Migrations of the Auslronesians", Anthropers. vol. XXVII (1932), 543-619.
[5] National Center for Social Sciences and Humanities, History Instidute, "Vietnam Historic Events (from ancient time to 1858)", Education Puhlisher, 2001.
[6] Smilh, K.D., "A phonological reconstruction of Proto - Norih - Bahnaric. Language Data", Asian Pacific Series No2, SIL, 1972.
[7] Awoi-hathe, Aviong..., Roglai Glossary, Collection of Vietnamese Ethnic Minority 1.anguages, vol. 3, part 1, p. 99.
[8] Benedlca, Paul K, "Austro - Thoi: Language and Culure", New Heaven: HRAF
[9] Benedicl, Paul K. "Thai Kadai and Indonesian: a new alignment in Southeastern Asia", American Anthopologisı, No 44.2, 1942.
[10] Bùi Khánh Thế (ed), "Việt - Chăm Dictionary", "Chăm - Viẹt Dictionary", Social Sciences Publisher. Hanoi, 1996
[11] Burusphat S., "Elementary Thai for foreigners", Mahidol University. 1991.
[12] Đoàn Văn Phùc. "Phonetics of Êdë", Doctoral Dissertation, Hanoi. 1993.
[13] Edmondson, Jcrold A.. Devid B. Solnit (eds), "Comparative Kadai: linguistics sludies beyond Tai', Dallas: SII/UTA Series in Linguistics.
[14] Fuller, E., "Chru Vocabulary", SIL. 1997
[15] Gregerson, Kenneth, Marilyn, "Rengao Vocabulary", SIL, 1977.
[16] Hoàng lương, "A glimpse at the Kadai eshnic communities of Vietnam: an anthropological s/udy", Discussions in Kadai and SE Asian 1.inguistics. Coordinalor: Jerold A. Edmondson IV, 10/1994.
[17] Hoàng Tuê. (ed), "Learning Pakôh - Taôih languages" 1extboak. People's Committee of Bình Trị Thiên Province, 1986.
[18] Hoàng Vẵ Ma, Ta Vân Thông, "The Language of Bru - Ván Kiều", Social Sciences Publisher, Hanoi, 1998.
[19] Hoàng Vân Ma, Vũ Bá Hùng, " $p u p e o$ Language", Social Sciences Publisher, Hanoi, 1992.
[20] Kosaka R., "A Descriptive Study of the Lacht Language - synnactic description historical reconstruction and genetic relation", Doctoral Disserlation, University of Foreign Languages, Tokyo, 2000.
[21] Lầm Đồng Province, "Việt - Kơho Dictionary", 1983.
[22] Mussay, G., "Dictionnaire Cam - Vietmamien Francais", Phan Rang, 1971.
[23] Nguyển Phú Phong, Teần Trl Dãi, Ferlus M., "fexique Vietnamien Ruc-Francais", Paris 1988.
[24] Remah, Del, "Viêt - Giarai Dictionary", Social Sciences Publisher, Hanoi, 1977.
[25] Sagart L. "The Higher Phylogeny of Austronesian and the Position of Tai - Kadai", Oceanic Linguistics, Vol. 43, No. 2.
[26] Smith, K.D., "Sedang Vocabulary, Sedang - Viet - Eng/ish", SIL, Saigon 1967.
[27] Vy Thj Bé, Saul, J.E., Wilson, N.F., "Nung Phan Stihng English Dictionary", SIL, 1982.
[28] Walter, H., L 'oventure des langues en Occident. Robert Laffont, S. A., Paris, 1994, pp. 90-93.
[29] Watson, Richard, Saundra, "Pacoh - Viet English Glossary", SIL 1979.

[^0]: $\overline{11}$ Russian linguists refer to this as "intemal form of linguistic units"
 ${ }^{\text {(2) }}$ In Taiwanese indigenous languages, initially there were only 5 basic numbers from 1 to 5 . The numbers from 6 to 9 are formed by placing the first five numbers next to each other, showing the addition ($6=5+1$. cic.). or substraction

[^1]: ($9=10-1$, only with number 9), multiplication ($6=3 \times 2$; $8=4 \times 2$. only with numbers 6 and 8)

[^2]: $\overline{131}$ Proto Malayo - Polynesian: primitive MalayoPolynesian language

[^3]: ${ }^{41}{ }^{1}$ roto Mialayo-Polynessian
 ${ }^{1 \text { ² }}$ Chåm in Ninh Thuặ and Hinh Thuạn provinces
 ${ }^{\text {it) }}$ Chàm in South Vietnam
 (7) The hahilat af Malayo-Polynesian ancestars prior to their scatucring over the Pacific islands |1. p437. Fig 2: 431 Tahle $\$ 1$

[^4]: ${ }^{\text {(8) }}$ Special thanks (o) Dr. Nguyển Vån Chićn for providing us with invaluatile corpes in Khmer.

[^5]: ${ }^{0}$ In Einglish, for a time, score was also used as number 20. and number 80 was also formed by combining 'four scores', very much like French.
 ${ }^{(10)}$ The language of the Gauls is still used as a living language (local tangue) in Wales, Southwest of the UK. Sce reference 28.

