Nguyễn Thị Hoàng Hà, Bùi Thị Kim Anh, Tống Thị Thu Hà

Main Article Content

Abstract

Tóm tắt: Xử lý ô nhiễm môi trường bằng thực vật (Phytoremediation) là công nghệ được đánh giá có triển vọng do giá thành thấp, vận hành đơn giản và thân thiện với môi trường. Nghiên cứu này được thực hiện nhằm đánh giá khả năng xử lý asen (As) trong đất của 15 loài thực vật mọc xung quanh khu mỏ chì kẽm Chợ Đồn, tỉnh Bắc Kạn. Hàm lượng As trong các loài thực vật và trong đất tương ứng đã được phân tích, đánh giá một cách chi tiết. Kết quả nghiên cứu cho thấy, loài Dương xỉ (Pteris vittata L.) có khả năng siêu tích lũy As với hàm lượng As lên đến 2300 mg/kgtrong thân - lá. Dựa vào hàm lượng As tích lũy trong thân - lá, hệ số vận chuyển và hệ số tích lũy, nghiên cứu đã chỉ ra một số loài thực vật có khả năng sử dụng để xử lý đất bị ô nhiễm As bao gồm cây Dương xỉ (P. vittata L.), Xuyến chi (Bidens pilosa L.) và Cỏ mần trầu (Eleusine indica (L.) Gaertn.).

Từ khóa: Asen, mỏ chì kẽm, thực vật bản địa, xử lý ô nhiễm môi trường bằng thực vật.

References

[1] D. Adriano, Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. New York. Springer, 2001.
[2] P.L. Smedley, D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry 17 (2002) 517-568.
[3] H.J.M. Bowen, Environmental Geochemistry of the Elements, Academic Press, London, 1979.
[4] K.H. Wedepohl, Handbook of Geochemistry, Springer-Verlag, Berlin, (1969-1974).
[5] S.R. Taylor, Abundance of elements in the continental crust, Geochimica et Cosmochimica Acta 28 (1964) 1273-1286.
[6] P.J.C. Favas, J. Pratas, M.N.V. Prasad, Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindicator, Science of the Total Environment 433 (2012) 390-397.
[7] A. Kabata-Pendias, H. Pendias, Trace elements in soils and plants, CRC Press, Florida, 1986.
[8] R. Singh, S. Singh, P. Parihar, V.P. Singh, S.M. Prasad, Arsenic contamination, consequences and remediation techniques: a review, Ecotoxicology and Environmental Safety 112 (2015) 247-270.
[9] S.D. Cunningham, D.W. Ow, Promises and prospects of phytoremediation, Plant Physiology 110(3) (1996) 715-719.
[10] I. Raskin, P.B.A.N. Kumar, S. Dushenkov, D.E. Salt, Bioconcentration of heavy metals by plants, Current Opinion in Biotechnology 5(3) (1994) 285-290.
[11] D.E. Salt, R.D. Smith, I. Raskin, Phytoremediation, Annual Review of Plant Physiology and Plant Molecular Biology 49 (1998) 643-668.
[12] I. Garbisu, X. Alkorta, Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment, Bioresource Technology 77 (2002) 229-236.
[13] L.Q. Ma, K.M. Komar, C. Tu, W. Zhang, Y. Cai, E.D. Kennelley, A fern that hyperaccumulates arsenic, Nature 409 (2001) 579.
[14] P.B.A.N. Kumar, V. Dushenkov, H. Motto, I. Raskin, Phytoextraction: The use of plants to remove heavy metals from soils, Environmental Science and Technology 29(5) (1995) 1232-1238.
[15] S.D. Ebbs, M.M.Lasat, D.J. Brandy, J. Cornish, R. Gordon, L. V. Kochian, Heavy metals in the environment: Phytoextraction of cadmium and zinc from a contaminated soil, Journal of Environmental Quality 26 (1997) 1424-1430.
[16] J.H. Yoon, S.J. Kang, C.H. Lee, T.K. Oh, Donghaeana dokdonensis gen. nov., sp. nov., isolated from sea water, International Journal of Systematic and Evolutionary Microbiology 56 (2006) 187-191.
[17] H.M. Conesa, A. Faz, R. Arnaldos, Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain), Science of Total Environment 366 (2006) 1-11.
[18] R.C. Gonzalez, M.C.A. Gonzalez-Chavez, Metal accumulation in wild plants surrounding mining wastes, Environmental Pollution 144 (2006) 84-92.
[19] S. Haque, J. Ji., K.H. Johannesson, Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA, Journal of Contaminant Hydrology 99 (2008) 68-84.
[20] Viện Địa chất, Điều tra tổng hợp, đánh giá tiềm năng một số khoáng sản trọng tâm (Pb-Zn, Au) ở những điểm đã được Nhà nước cho phép khai thác tận thu, phục vụ quy hoạch phát triển kinh tế - xã hội tỉnh Bắc Kạn, 2000.
[21] USEPA, EPA Region 3 Risk-based Concentration Table, 2014. http://cfpub.epa.gov/ncea/iris/search/index.cfm. Accessed September12th, 2014.
[22] R.R. Brooks, Plants that hyperaccumulate heavy metals. CAB International, Wallingford, 1998.
[23] M.I. Mattina, W. Lannucci-Berger, C. Musante, J.C. White, Concurrent plant uptake of heavy metals and persistent organic pollutants from soil, Journal of Environment Pollution 124 (2003) 375-378.
[24] W.H. Zhang, Y. Cai, C. Tu, L.Q. Ma, Arsenic speciation and distribution in an arsenic hyperaccumulating plant, Science of the Total Environment 300 (2002) 167-177.
[25] W.J. Fitz, W.W. Wenzel, Arsenic transformation in the soil-rhizosphere-plant system: fundamentals and potential application to remediation, Journal of Biotechnology 99 (2002) 259-278.
[26] QCVN 03-MT:2015/BTNMT, Quy chuẩn kỹ thuật quốc gia về giới hạn cho phép của một số kim loại nặng trong đất. Bộ Tài nguyên và Môi trường, Hà Nội, 2015.
[27] J. Bech, I. Corrales, P. Tume, J. Barceló, P. Duran, N. Roca, C. Poschenrieder, Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees), Journal of Geochemical Exploration 113 (2012) 100-105.
[28] U. Jana, V. Chassany, G. Bertrand, M. Castrec-Rouelle, E. Aubry, S. Boudsocq, D. Laffray, A. Repellin, Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation, Journal of Environmental Management 110 (2012) 188-193.
[29] C.Y. Wei, T.B. Chen, Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation, Chemosphere 63(6) (2006) 1048-1053.
[30] N.K. Singh, A.S. Raghubanshi, A.K. Upadhyay, U.N. Rai, Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India, Ecotoxicology and Environmental Safety, 130 (2016) 224-233.
[31] S. Fernández, C. Poschenrieder, C. Marcenò, J.R. Gallego, D. Jiménez-Gámez, A. Bueno, E. Afif, Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain, Journal of Geochemical Exploration (2016). DOI: http://dx.doi.org/10.1016/j.gexplo.2016.05.015.
[32] E. Álvarez-Ayuso, V. Otones, A. Murciego, A. García-Sánchez, I. Santa Regina, Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities, Science of the Total Environment 439 (2012) 35-43.
[33] N. Haque, J.R. Peralta-Videa, G.L Jones, T.E., Gill, J.L. Gardea-Torresdey, Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA, Environmental Pollution 153(2) (2008) 362-368.
[34] H.B. Wang, M.H. Wong, C.Y. Lan, A.J.M. Baker, Y.R. Qin, W.S. Shu, G.Z. Chen, Z.H. Ye, Uptake and accumulation of arsenic by 11 Pteris taxa from southern China, Environmental Pollution 145(1) (2007) 225-233.
[35] M. Srivastava, L.Q. Ma, J.A.G. Santos, Three new arsenic hyperaccumulating ferns, Science of the Total Environment 364 (2006) 24-31.
[36] S. Kalve, B.K. Sarangi, R.A. Pandey, T. Chakrabarti, Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata - prospective for phytoextraction from contaminated water and soil, Current Science 100 (2011) 888-894.
[37] N.T.H. Ha, M. Sakakibara, S. Sano, M.T. Nhuan, Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam, Journal of Hazardous Materials 186 (2011) 1384-1391.
[38] M.E. Watanabe, Phytoremediation on the brink of commercialization, Environmental Science Technology 31 (1997) 182-186.
[39] R.D. Reeves, A.J.M. Baker, I. Raskin, B.D. Ensley, Metal-accumulating plants. In: Phytoremediation of toxic metals: using plants to clean up the environment, 1st ed., John Wiley and Sons, New York, 2000.
[40] X. Xian, Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants, Plant and Soil 113 (1989)
257-264.
[41] X. Xian, G.I. Shokohifard, Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils, Water, Air, and Soil Pollution 45 (1989) 265-273.
[42] L. Rodriguez, E. Ruiz, J. Alonso-Azcarate, J. Rincon, Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain, Journal of Environment Management 90 (2009) 1106-1116.
[43] C. Tu, L.Q. Ma, B. Bondada, Arsenic accumulation in the hyperaccumulator Chinese Brake and its utilization potential for phytoremediation, Journal of Environmental Quality 31 (2002) 1671-1675.
[44] M.I.S. Gonzaga, J.A.G. Santos, L.Q. Ma, Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution, Environment Pollution 154 (2008) 212-218.