Thanh Son Le, Tran Manh Hai, Doan Tuan Linh

Main Article Content

Abstract

One of the major and serious pollution issues in an agriculture-based country as
Vietnam is derived from herbicide, especially Glyphosate herbicide which can cause a massive
quantity of adverse effects and acute toxicity to aquatic life and human health. Hence, this research
focused on setting up an electro-Fenton system with a Pt gauze anode and a commercial carbon
felt cathode for Glyphosate herbicide treatment with the primary mechanism based on the in situ
hydrogen peroxide electro-generation and ferrous ion catalyst regeneration. This study investigated
effect of initial pH and current intensity on both the amount of hydrogen peroxide production and
the Glyphosate mineralization performance. The results indicated that at pH 3, the quantity of
H2O2 production on cathode was highest (~0.15 mg/L), and the Glyphosate mineralization
performance was optimum, approximately 60% at an electrolysis time of 50 min. Moreover, when
current intensity increased, the amount of H2O2 electro-generation increased, leading to a better
Glyphosate mineralization efficiency. Nonetheless, in order to minimize the electrode corrosion as
well as save energy cost, the optimum current intensity was found at 0.5 A.
Keywords


Electro-Fenton, hydroxyl radical, Glyphosate, hydrogen peroxide, herbicide removal


References


[1] K.Z. Guyton, D. Loomis, Y. Grosse,F. El Ghissassi, L. Benbrahim-Tallaa, N. Ghua, C. Scoccianti, H. Mattock, K. Straif, Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazion, and glyphosate, The Lancet Oncology, 16, 2015, 490-491.
[2] A. Bes-Pia´,J.A. Mendoza-Rota, L. Roig-Alcover, A. Iborra-Clar, M.I Iborra-Clar, M.I. Alcaina-Miranda, Comparison between nanofiltration and oxzonation of biologically treated textile wastewater for its reuse in the industry, Desalination, 157, 2003, 81– 86.
[3] U. Zissi, G. Lyberatos, S. Pavlou, Biodegradation of p-aminoazobenene by Bacillus subtilis under aerobic conditions, J. Ind. Microbiol. Biotechnol, 19, 1997, 49–55.
[4] N.D. Lourenc, J.M. Novais, H.M. Pinheiro, Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor, J. Biotechnol 89, 2001, 163–174.
[5] M. Adosinda, M. Martins, N. Lima, A.J.D. Silvestre, M. João Queiroz, Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes, Chemosphere, 52, 2003, 967–973.
[6] N.K. Pazarlioglu, R.O. Urek, F. Ergun, Biodecolourization of Direct Blue 15 by immobilized Phanerochaete chrysosporium, Process Biochem, 40, 2005, 1923–1929.
[7] P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299, 2012, 1–15.
[8] E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev, 109, 2009, 6570–6631.
[9] I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system, Angew. Chem. Int. Ed, 42, 2003, 3653–3655.
[10] W.R.P. Barros, R.M. Reis, R.S. Rocha, M.R.V. Lanza, Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine, Electrochimica Acta, 104, 2013, 12–18.
[11] S. Shibata, T. Suenobu, S. Fukuzumi, Direct synthesis of hydrogen peroxide from hydrogen and oxygen by using a water-soluble iridium complex and flavin mononucleotide, Angew. Chem. Int. Ed., 52, 2013, 12327–12331.
[12] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process, Angew. Chem. Int. Ed., 45, 2006, 6962–6984.
[13] Y. Sheng, S. Song, X. Wang, L. Song, C. Wang, H. Sun, X. Niu, Electrogeneration of hydrogen peroxide on a novel highly effective acetylene black-PTFE cathode with PTFE film, Electrochimica Acta, 56, 2011, 8651–8656.
[14] M. Giomo, A. Buso, P. Fier, G. Sandonà, B. Boye, G. Farnia, A small-scale pilot plant using an oxygen-reducing gas-diffusion electrode for hydrogen peroxide electro-synthesis, Electrochimica Acta, 54, 2008, 808–815.
[15] E. Guivarch, S. Trevin, C. Lahitte, M.A. Oturan, Degradation of azo dyes in water by Electro–Fenton process, Environ Chem Lett, 1, 2003, 38–44.
[16] B.L. Bhaskara, P. Nagaraja, Direct Sensitive Spectrophotometric Determination of Glyphosate by Using Ninhydrin as a Chromogenic Reagent in Formulations and Environmental Water Samples, Helv Chim Acta, 89(11), 2006, 2686-2693
[17] C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions of TiO2, ZnO, and Desert Sand, Environ Sci Technol, 22, 1988, 798-806.
[18] R. Hernandez, M. Zappi, J. Colucci, and R. Jones, Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water, Journal of Hazardous Materials, 92, 2002, 33-50.
[19] J. Hoigné , Inter-calibration of OH radical sources and water quality parameters, Water Science and Technology 35, 1997, 1-8.
[20] K. Košutić, L. Furač, L. Sipos, and B. Kunst, Removal of arsenic and pesticides from drinking water by nanofiltration membranes, Separation and Purification Technology 42, 2005, 137-144.
[21] B. G. Kwon, D. S. Lee, N. Kang, and J. Yoon, Characteristics of p-chlorophenol oxidation by Fenton's reagent, Water Research 33, 1999, 2110-2118
[22] R. Hernandez, M. Zappi, J. Colucci, and R. Jones, Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water, Journal of Hazardous Materials, 92, 2002, 33-50.
[23] Z. Qiang, J.H. Chang, C.P. Huang, Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions, Water Research, 36, 2002, 85-94.
[24] B. L. Bhaskara, P.Nagaraja, Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples, Helvetica chimica acta, 89 (11), 2006, 2686-2693.
[25] S. Ammar, M. A. Oturan, L. Labiadh, A. Guersalli, R. Abdelhedi, N. Oturan, and E. Brillas, Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst, Water Research, 74, 2015, 77-87.
[26] A. Dirany, I. Sires, N. Oturan, M.A. Oturan, Electrochemical abatement of the antibiotic sulfamethoxazole from water, Chemosphere, 81, 2010, 594-602.
[27] M. A. Oturan, J. Peiroten, P. Chartrin, and A. J. Acher, Complete Destruction of p-Nitrophenol in Aqueous Medium by Electro-Fenton Method, Environmental Science & Technology, 34, 2000, 3474-3479.
[28] T. P. Wang, L. C. Ming, H.H. Yao, Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process, Journal of Hazardous Materials, 161, 2009, 1484–1490.
[29] A. O. Mehmet, C. E. Mohamed, O. Nihal, El. K. Kacem, J. A. Jean, Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process, Applied Catalysis B: Environmental, 97, 2010, 82–89.


 

Keywords: electro-Fenton, hydroxyl radical, Glyphosate, hydrogen peroxide, herbicide removal

References

[1] K.Z. Guyton, D. Loomis, Y. Grosse,F. El Ghissassi, L. Benbrahim-Tallaa, N. Ghua, C. Scoccianti, H. Mattock, K. Straif, Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazion, and glyphosate, The Lancet Oncology, 16, 2015, 490-491.
[2] A. Bes-Pia´,J.A. Mendoza-Rota, L. Roig-Alcover, A. Iborra-Clar, M.I Iborra-Clar, M.I. Alcaina-Miranda, Comparison between nanofiltration and oxzonation of biologically treated textile wastewater for its reuse in the industry, Desalination, 157, 2003, 81– 86.
[3] U. Zissi, G. Lyberatos, S. Pavlou, Biodegradation of p-aminoazobenene by Bacillus subtilis under aerobic conditions, J. Ind. Microbiol. Biotechnol, 19, 1997, 49–55.
[4] N.D. Lourenc, J.M. Novais, H.M. Pinheiro, Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor, J. Biotechnol 89, 2001, 163–174.
[5] M. Adosinda, M. Martins, N. Lima, A.J.D. Silvestre, M. João Queiroz, Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes, Chemosphere, 52, 2003, 967–973.
[6] N.K. Pazarlioglu, R.O. Urek, F. Ergun, Biodecolourization of Direct Blue 15 by immobilized Phanerochaete chrysosporium, Process Biochem, 40, 2005, 1923–1929.
[7] P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299, 2012, 1–15.
[8] E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev, 109, 2009, 6570–6631.
[9] I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system, Angew. Chem. Int. Ed, 42, 2003, 3653–3655.
[10] W.R.P. Barros, R.M. Reis, R.S. Rocha, M.R.V. Lanza, Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine, Electrochimica Acta, 104, 2013, 12–18.
[11] S. Shibata, T. Suenobu, S. Fukuzumi, Direct synthesis of hydrogen peroxide from hydrogen and oxygen by using a water-soluble iridium complex and flavin mononucleotide, Angew. Chem. Int. Ed., 52, 2013, 12327–12331.
[12] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process, Angew. Chem. Int. Ed., 45, 2006, 6962–6984.
[13] Y. Sheng, S. Song, X. Wang, L. Song, C. Wang, H. Sun, X. Niu, Electrogeneration of hydrogen peroxide on a novel highly effective acetylene black-PTFE cathode with PTFE film, Electrochimica Acta, 56, 2011, 8651–8656.
[14] M. Giomo, A. Buso, P. Fier, G. Sandonà, B. Boye, G. Farnia, A small-scale pilot plant using an oxygen-reducing gas-diffusion electrode for hydrogen peroxide electro-synthesis, Electrochimica Acta, 54, 2008, 808–815.
[15] E. Guivarch, S. Trevin, C. Lahitte, M.A. Oturan, Degradation of azo dyes in water by Electro–Fenton process, Environ Chem Lett, 1, 2003, 38–44.
[16] B.L. Bhaskara, P. Nagaraja, Direct Sensitive Spectrophotometric Determination of Glyphosate by Using Ninhydrin as a Chromogenic Reagent in Formulations and Environmental Water Samples, Helv Chim Acta, 89(11), 2006, 2686-2693
[17] C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Photocatalytic Production of H2O2 and Organic Peroxides in Aqueous Suspensions of TiO2, ZnO, and Desert Sand, Environ Sci Technol, 22, 1988, 798-806.
[18] R. Hernandez, M. Zappi, J. Colucci, and R. Jones, Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water, Journal of Hazardous Materials, 92, 2002, 33-50.
[19] J. Hoigné , Inter-calibration of OH radical sources and water quality parameters, Water Science and Technology 35, 1997, 1-8.
[20] K. Košutić, L. Furač, L. Sipos, and B. Kunst, Removal of arsenic and pesticides from drinking water by nanofiltration membranes, Separation and Purification Technology 42, 2005, 137-144.
[21] B. G. Kwon, D. S. Lee, N. Kang, and J. Yoon, Characteristics of p-chlorophenol oxidation by Fenton's reagent, Water Research 33, 1999, 2110-2118
[22] R. Hernandez, M. Zappi, J. Colucci, and R. Jones, Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water, Journal of Hazardous Materials, 92, 2002, 33-50.
[23] Z. Qiang, J.H. Chang, C.P. Huang, Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions, Water Research, 36, 2002, 85-94.
[24] B. L. Bhaskara, P.Nagaraja, Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples, Helvetica chimica acta, 89 (11), 2006, 2686-2693.
[25] S. Ammar, M. A. Oturan, L. Labiadh, A. Guersalli, R. Abdelhedi, N. Oturan, and E. Brillas, Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst, Water Research, 74, 2015, 77-87.
[26] A. Dirany, I. Sires, N. Oturan, M.A. Oturan, Electrochemical abatement of the antibiotic sulfamethoxazole from water, Chemosphere, 81, 2010, 594-602.
[27] M. A. Oturan, J. Peiroten, P. Chartrin, and A. J. Acher, Complete Destruction of p-Nitrophenol in Aqueous Medium by Electro-Fenton Method, Environmental Science & Technology, 34, 2000, 3474-3479.
[28] T. P. Wang, L. C. Ming, H.H. Yao, Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process, Journal of Hazardous Materials, 161, 2009, 1484–1490.
[29] A. O. Mehmet, C. E. Mohamed, O. Nihal, El. K. Kacem, J. A. Jean, Kinetics of oxidative degradation/mineralization pathways of the phenylurea herbicides diuron, monuron and fenuron in water during application of the electro-Fenton process, Applied Catalysis B: Environmental, 97, 2010, 82–89.