Nguyen Van Vuong, Luong Thi Thu Hoai

Main Article Content


The Dong Ho sedimentary formation consists of gravel, sand and sandstone, mudstone interbeded with asphalt layer or oil shale cropping out at Quang Ninh is considered as outcrop of petroleum potential source rock and correlated to source rock of the Cenozoic basins on the continental shelf of Southeast Asia. Geochemical investigation of major and trace elements content variation from 13 typical samples selected from diferent layers leads to divide the Dong Ho formation into two parts: the lower part characterized by unclear variation while the upper part exposing a more clear trend. The paleoenvironmental proxy and the CIA, CIW, PIA and CPA indices of the Dong Ho formation revealed high weathering intensity. V/Ni and C/Cr s vary from 0.14 to 1.52; and from 0.02 to 0.52 respectively indicate to oxic depositional environment. The provenance of the Dong Ho sedimentary layers come from the recycling of sedimentary source rocks and deposited within freshwater lacustrine environment dominated by humid climate with estimated mean annual rainfall of 1533 mm/yr±181 mm before changing to wet and reduction environment during diagenesis.

Keywords: Major element, trace element, geochemistry, Dong Ho, paleoenvironment.

Keywords: Major element, trace element, geochemistry, Dong Ho, paleoenvironment.


[1] Xu, F., B. Hu, Y. Dou, X. Liu, S. Wan, Z. Xu, X. Tian, Z. Liu, X. Yin, and A. Li, Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene. Continental Shelf Research, 2017. 144: p. 21-30.
[2] Greggio, N., B.M.S. Giambastiani, B. Campo, E. Dinelli, A. Amorosi, and S. Tyrrell, Sediment composition, provenance, and Holocene paleoenvironmental evolution of the Southern Po River coastal plain (Italy). Geological Journal, 2017. p. 1-15.
[3] Yanguang Dou, S.Y., Zhenxia Liu, Peter D. Clift, Xuefa Shi, Hua Yu and Serge Berne, Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions Marine Geology, 2010. 275(1-4): p. 212-220.
[4] Scott, R.A., H. R. Smyth, A. C. Morton, and N. Richardson, Sediment Provenance Studies in Hydrocarbon Exploration and Production. Geological society, london, special publications, 2014. 386.
[5] Wysocka, A. and A. Świerczewska, Lithofacies and depositional environments of Miocene deposits from tectonically-controlled basins (Red River Fault Zone, northern Vietnam). Journal of Asian Earth Sciences, 2010. 39(3): p. 109-124.
[6] Nghi, T., Địa chất trầm tích Việt nam. 2017: Nxb Đại học Quốc gia Hà Nội. 509.
[7] Böhme, M., J. Prieto, S. Schneider, N.V. Hung, D.D. Quang, and D.N. Tran, The Cenozoic on-shore basins of Northern Vietnam: Biostratigraphy, vertebrate and invertebrate faunas. Journal of Asian Earth Sciences, 2011. 40(2): p. 672-687.
[8] Long, H.V., P.D. Clift, D. Mark, H. Zheng, and M.T. Tan, Ar–Ar muscovite dating as a constraint on sediment provenance and erosion processes in the Red and Yangtze River systems, SE Asia. Earth and Planetary Science Letters, 2010. 295(3–4): p. 379-389.
[9] Gesa, K., P.L.d. Boer, R.B. Pedersen, and T.E. Wong, Provenance of Pliocene sediments and paleoenvironmental changes in the southern North Sea region using Samarium–Neodymium (Sm/Nd) provenance ages and clay mineralogy. Sedimentary Geology 2004. 171: p. 205 – 226.
[10] Kaifeng, Y., F. Lehmkuhl, B. Diekman, V. Nottebaum, and G. Stauch, Major and trace elements documented paleoenvironmental and provenance signatures as inferred from the lacustrine sequence of Orog Nuur, southern Mongolia. Geophysical Research Abstracts, 2016. Vol. 18, (EGU2016-1896): p. 1896.
[11] Saito, S., Major and trace element geochemistry of sediments from east greenland continental rise: an implication for sediment provenance and source area weathering, in Proceedings of the Ocean Drilling Program, Scientific Results, , A.D. Saunders, H.C. Larsen, and S.W. Wise, Jr., Editors. 1998.
[12] Petersen, H.I., H.P. Nytoft, and L.H. Nielsen, Characterisation of oil and potential source rocks in the northeastern Song Hong Basin, Vietnam: indications of a lacustrine-coal sourced petroleum system. Organic Geochemistry, 2004. 35 p. 493–515.
[13] Petersen, H.I., V. Tru, L.H. Nielsen, N.A. Duc, and H.P. Nytoft, Source rock properties of lacustrine mudstones and coals (oligocene dong ho formation), onshore Song Hong basin, northern Vietnam. Journal of Petroleum Geology, , 2005. 28: p. 19 - 38.
[14] Thanh, T.D., V. Khúc, Đ.T. Huyên, Đ.N. Trưởng, Đ. Bạt, N.Đ. Dỹ, N.H. Hùng, P.H. Thông, P.K. Ngân, T.H. Phương, T.H. Dần, T.T. Thắng, T.V. Trị, and T.V. Long, Các phân vị địa tầng Việt Nam. 2005: Nxb Đại học Quốc gia Hà Nội. 504.
[15] Hofer, G., M. Wagreich, and S. Neuhuber, Geochemistry of fine-grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): Implications for paleoenvironmental and provenance studies. Geoscience Frontiers, 2013. 4: p. 449-468.
[16] Nesbitt, H.W., G. Markovics, and R.C. price, Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 1980. 44(11): p. 1659-1666.
[17] Chao Li and S. Yang, Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? Amerian Journal of Science, 2010. 310: p. 111e127.
[18] Nesbitt, H.W. and G.M. Young, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982. 299: p. 715-717.
[19] Harnois, L., The C.I.W. index: a new chemical index of weathering. Sedimentary Geology, 1988. 55: p. 319–322.
[20] Fedo, C.M., H.W. Nesbitt, and G.M. Young, Unraveling the effect of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995. 23 p. 921–924.
[21] Buggle, B., B. Glaser, U. Hambach, N. Gerasimenko, and S. Markovic, An evaluation of geochemical weather indices in loess-paleosol studies. . Quaternary International 2011. 240, : p. 12-21.
[22] Garcia, D., J. Coehlo, and M. Perrin, Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (northern Portugal). European Journal of Mineralogy 1991. 3: p. 401–414.
[23] Mongelli, G., S. Critelli, F. Perri, M. Sonnino, and V. Perrone, Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani mountains, southern Italy. Geochemical Journal, 2006. 40: p. 197-209.
[24] Sheldon, N.D., Gregory J. Retallack, and Satoshi Tanaka, Geochemical Climofunctions from North American Soils and Application to Paleosols across the Eocene‐Oligocene Boundary in Oregon. The Journal of Geology, 2002. 110(6): p. 687-696.
[25] Harris, N., K. Freeman, R. D. Pancost, T. White, and G. Mitchell, The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa. AAPG Bulletin, 2004. 88(8): p. 1163-1184.
[26] MacDonald, R., D. Hardman, R. Sprague, Y. Meridji, W. Mudjiono, J. Galford, M. Rourke, M. Dix, and M. Kelton, Using Elemental Geochemisty to Improve Sandstone Reservoir Characterization: a Case Study From the Unayzah A Interval of Saudi Arabia. Vol. 52. 2011. 344-356.
[27] Galarraga, F., K. Reategui, A. Martïnez, M. Martínez, J.F. Llamas, and G. Márquez, V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins. Journal of Petroleum Science and Engineering, 2008. 61(1): p. 9-14.
[28] Jones, B. and D.A.C. Manning, Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 1994. 111(1): p. 111-129.