Nguyen Cong Manh, Phan Van Minh, Nguyen Tri Quang Hung, Phan Thai Son, Nguyen Minh Ky

Main Article Content

Abstract

Abstract: The study aims to assess the applying effectiveness of constructed wetland technology for polluted surface water treatment. The experimental models were operated with 2 hydraulic loadings of 500mL/min/m2 (T1) and 1500mL/min/m2 (T2). The reed grass (Phragmites australis) was selected for the studying process. The surface water resource was removed from the pollutant components (TSS, BOD5, COD) and harmful microorganisms (fecal coliform) which aim to protect the water quality and aquatic ecosystems. The results showed the treatment effectiveness of loading of 500mL/min/m2 is higher than the loading of 1500mL/min/m2, especially in the reed planting trial. In particular, the treatment efficiency of pollutants such as TSS, BOD5, COD reached a high rate of 85%, 90%, and 87%, respectively. In addition, ANOVA statistical analysis showed the effectiveness of water quality parameters belong to two loadings were statistically significant (P<0.05). Thus, the surface water pollutant removal by subsurface vertical flow constructed wetland technology could be contributed to promoting the sustainable agricultural development.


Keywords: Constructed wetland, removal, surface water, Phragmites australis, pollution.


References:


[1] Z. ElZein, A. Abdou, I.A. ElGawad, Constructed Wetlands as a Sustainable Wastewater Treatment Method in Communities, Procedia Environmental Sciences 34 (2016) 605-617. https://doi.org/10. 1016/ j.proenv.2016.04.053.
[2] R.H. Kadlec, S.D. Wallace, Treatment Wetlands, CRC Press/Lewis Pucblishers, Boca Raton, FL, 2009.
[3] J. Vymazal, Constructed Wetlands for Wastewater Treatment, Water 2(3) (2010) 530-549. https://doi. org/10.3390/w2030530.
[4] L. Volker, E. Elke, L.W. Martina, L. Andreas, M.G. Richard, Nutrient Removal Efficiency and Resource Economics of Vertical Flow and Horizontal Flow Constructed Wetlands, Ecological Engineering 18 (2) (2001) 157-171. https://doi.org/ 10.1016/S0925-8574(01)00075-1.
[5] M. Ilda, F. Daniel, P. Enrico, F. Laura, M. Erika, Z. Gabriele, A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems, Environmental Management 41 (1) (2007) 118-129. https://doi.org /10.1007/s00267-007-9001-6.
[6] J. Vymazal, The use of constructed wetlands with horizontal sub-surface flow for various types of wastewater, Ecological Engineering 35 (2009) 1-17. https://doi.org/10.1016/j.ecoleng.2008.08.016.
[7] S. Katarzyna, H.G. Magdalena, The use of constructed wetlands for the treatment of industrial wastewater, Journal of Water and Land Development 34 (2017) 233–240. https://doi.org /10.1515/jwld-2017-0058.
[8] S. Dallas, B. Scheffe, G. Ho, Reedbeds for greywater treatment-case study in Santa Elena-Monteverde, Costa Rica, Central America. Ecol. Eng. 23 (2004) 55-61. https://doi.org/10.1016/ j.ecoleng.2004.07.002.
[9] Tổng cục Thống kê, Niên giám thống kê Việt Nam, NXB Thống kê, Hà Nội, 2018.
[10] Bộ Tài nguyên và Môi trường, Báo cáo hiện trạng môi trường quốc gia – Môi trường nước mặt, Hà Nội, 2012.
[11] UBND tỉnh Bình Dương, Quyết định số 3613/QĐ-UBND về việc Quy hoạch tài nguyên nước tỉnh Bình Dương giai đoạn 2016 - 2025, tầm nhìn đến năm 2035, Bình Dương, 2016.
[12] M. Mirco, T. Attilio, Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment, Journal of Environmental Science and Health 48 (5) (2013) 568-580. https://doi.org/ 10.1080/10934529.2013.730457.
[13] K.J. Havens, H. Berquist, W.I. Priest, Common reed grass, Phragmites australis, expansion into constructed wetlands: Are we mortgaging our wetland future? Estuaries 26 (2003) 417-422. https://doi.org/10.1007/BF02823718.
[14] S. Aboubacar, R. Mohamed, A. Jamal, A. Omar, E. Samira, Exploitation of Phragmites australis (Reeds) in Filter Basins for the Treatment of Wastewater, Journal of Environmental Science and Technology 11 (2018) 56-67. https://doi.org/10. 3923/jest.2018.56.67.
[15] S.I. Abou-Elela, M.S. Hellal, Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus, Ecol. Eng. 47 (2012) 209-213. https://doi.org/10.1016/j. ecoleng.2012.06.044.
[16] H. Brix, A.C. Arias, The use of vertical flow constructed welands for on-site treatment of domestic wastewater: New Danish guidelines, Ecological Engineering 25 (2005) 491-500. https://doi.org/10.1016/j.ecoleng.2005.07.009.
[17] J. Puigagut, J. Villasenor, J.J. Salas, E. Becares, J. Garcia, Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparison study, Ecological Engineering 30 (2007) 312-319. https://doi.org/10.1016/j.ecoleng. 2007.04.005.
[18] R. Kadlec, R. Knight, Treatment Wetlands, CRC Press, 1996.
[19] L. Yang, H.T. Chang, M.N.L. Huang, Nutrient removal in gravel-and soil-based wetlands microcosms with and without vegetation, Ecological Engineering 18 (2001) 91-105. https://doi.org/10.1016/S0925-8574(01)00068-4.
[20] D. Steer, L. Fraser, J. Boddy, B. Seibert, Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent, Ecological Engineering 18 (2002) 429-440. https://doi.org/10.1016/S0925-8574(01)00104-5.
[21] J. Vymazal, The use of subsurface constructed wetlands for wastewater in Czech Republic: 10 years experience, Ecological Engineering 18 (2002) 633-646. https://doi.org/10.1016/S0925-8574(02)00025-3.
[22] C.S. Akratos, V.A. Tsihrintzis, Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands, Ecological Engineering 29 (2007) 173-191. https://doi.org/ 10.1016/j.ecoleng.2006.06.013.

Keywords: Constructed wetland, removal, surface water, Phragmites australis, pollution.

References

[1] Z. ElZein, A. Abdou, I.A. ElGawad, Constructed Wetlands as a Sustainable Wastewater Treatment Method in Communities, Procedia Environmental Sciences 34 (2016) 605-617. https://doi.org/10. 1016/ j.proenv.2016.04.053.
[2] R.H. Kadlec, S.D. Wallace, Treatment Wetlands, CRC Press/Lewis Pucblishers, Boca Raton, FL, 2009.
[3] J. Vymazal, Constructed Wetlands for Wastewater Treatment, Water 2(3) (2010) 530-549. https://doi. org/10.3390/w2030530.
[4] L. Volker, E. Elke, L.W. Martina, L. Andreas, M.G. Richard, Nutrient Removal Efficiency and Resource Economics of Vertical Flow and Horizontal Flow Constructed Wetlands, Ecological Engineering 18 (2) (2001) 157-171. https://doi.org/ 10.1016/S0925-8574(01)00075-1.
[5] M. Ilda, F. Daniel, P. Enrico, F. Laura, M. Erika, Z. Gabriele, A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems, Environmental Management 41 (1) (2007) 118-129. https://doi.org /10.1007/s00267-007-9001-6.
[6] J. Vymazal, The use of constructed wetlands with horizontal sub-surface flow for various types of wastewater, Ecological Engineering 35 (2009) 1-17. https://doi.org/10.1016/j.ecoleng.2008.08.016.
[7] S. Katarzyna, H.G. Magdalena, The use of constructed wetlands for the treatment of industrial wastewater, Journal of Water and Land Development 34 (2017) 233–240. https://doi.org /10.1515/jwld-2017-0058.
[8] S. Dallas, B. Scheffe, G. Ho, Reedbeds for greywater treatment-case study in Santa Elena-Monteverde, Costa Rica, Central America. Ecol. Eng. 23 (2004) 55-61. https://doi.org/10.1016/ j.ecoleng.2004.07.002.
[9] Tổng cục Thống kê, Niên giám thống kê Việt Nam, NXB Thống kê, Hà Nội, 2018.
[10] Bộ Tài nguyên và Môi trường, Báo cáo hiện trạng môi trường quốc gia – Môi trường nước mặt, Hà Nội, 2012.
[11] UBND tỉnh Bình Dương, Quyết định số 3613/QĐ-UBND về việc Quy hoạch tài nguyên nước tỉnh Bình Dương giai đoạn 2016 - 2025, tầm nhìn đến năm 2035, Bình Dương, 2016.
[12] M. Mirco, T. Attilio, Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment, Journal of Environmental Science and Health 48 (5) (2013) 568-580. https://doi.org/ 10.1080/10934529.2013.730457.
[13] K.J. Havens, H. Berquist, W.I. Priest, Common reed grass, Phragmites australis, expansion into constructed wetlands: Are we mortgaging our wetland future? Estuaries 26 (2003) 417-422. https://doi.org/10.1007/BF02823718.
[14] S. Aboubacar, R. Mohamed, A. Jamal, A. Omar, E. Samira, Exploitation of Phragmites australis (Reeds) in Filter Basins for the Treatment of Wastewater, Journal of Environmental Science and Technology 11 (2018) 56-67. https://doi.org/10. 3923/jest.2018.56.67.
[15] S.I. Abou-Elela, M.S. Hellal, Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus, Ecol. Eng. 47 (2012) 209-213. https://doi.org/10.1016/j. ecoleng.2012.06.044.
[16] H. Brix, A.C. Arias, The use of vertical flow constructed welands for on-site treatment of domestic wastewater: New Danish guidelines, Ecological Engineering 25 (2005) 491-500. https://doi.org/10.1016/j.ecoleng.2005.07.009.
[17] J. Puigagut, J. Villasenor, J.J. Salas, E. Becares, J. Garcia, Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparison study, Ecological Engineering 30 (2007) 312-319. https://doi.org/10.1016/j.ecoleng. 2007.04.005.
[18] R. Kadlec, R. Knight, Treatment Wetlands, CRC Press, 1996.
[19] L. Yang, H.T. Chang, M.N.L. Huang, Nutrient removal in gravel-and soil-based wetlands microcosms with and without vegetation, Ecological Engineering 18 (2001) 91-105. https://doi.org/10.1016/S0925-8574(01)00068-4.
[20] D. Steer, L. Fraser, J. Boddy, B. Seibert, Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent, Ecological Engineering 18 (2002) 429-440. https://doi.org/10.1016/S0925-8574(01)00104-5.
[21] J. Vymazal, The use of subsurface constructed wetlands for wastewater in Czech Republic: 10 years experience, Ecological Engineering 18 (2002) 633-646. https://doi.org/10.1016/S0925-8574(02)00025-3.
[22] C.S. Akratos, V.A. Tsihrintzis, Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands, Ecological Engineering 29 (2007) 173-191. https://doi.org/ 10.1016/j.ecoleng.2006.06.013.