Tran Thi Tuyet Thu, Nguye Thi Thao, Trinh Quang Phap

Main Article Content

Abstract

Tylenchulus semipenetrans causes serious damages related to decline on citrus in Cao Phong district, Hoa Binh province. This study evaluated the effects of EM, AMF, AT+Ketomium and Chitosan-Super in the control of nematodes. In the laboratory condition, the T. semipenetrans was isolated from the soil and assessed for survival in the liquid medium containing EM and Chitosan-Super. The larval mortality rate reached 98.57% after 72 hours when using Chitosan-Super at 2% concentration. For pot experiments, T. semipenetrans and bioinoculants were infected into Hoa Binh red grapefruit rhizospheres. The results indicated that nematode density in the soil decreased the most in CT5 (Chitosan-Super), followed by CT4 (AT+Ketomium), CT3 (AMF+EM) and CT1 (AMF), CT2 (EM); nematode density in roots was the highest at CT5 of 132±27 individuals/5g of roots, while in CT1 there was no parasitic nematode on the red grapefruit root though its density in soil was high (2.424±125 individuals/250g of soil). Citrus grew normally in all of the experience formulas. Research results are an important basis for effective use of bioinoculants in preventing nematode parasitic on citrus.


 

Keywords: Bioinoculants, citrus, Cao Phong orange, Tylenchulus semipenetrans.

References

[1] V.A. Tu, T.Q. Phap, N.V. Toan, Plant nematodes associated to replanting coffee in Basalt soil and their correlation with yellow leaf symtom in Gia Lai, Science and Technology Journal of Agricultural & Rural Development 1 (2014) 36-43. (in Vietnamese).
[2] T.Q. Phap, N.T. Thao, T.T.T. Thu, N.H. Tien, T.T.H. Anh, Distribution Characterstics of Plant Parasitic Nematodes in Citrus Growing Soil in Cao Phong, Hoa Binh, JS:ESS 32(2016)1-8(in Vietnamese).
[3] N.V. Thanh, Fruit-trees parasitic nematodes and control methods, Science and Technics Publishing House, 2002 (in Vietnamese)
[4] S.A. Subbotin, J.J. Chitambar, Chapter 5: Plant Parasitic Nematodes of New Mexico and Arizona, S. H. Thomas, C. Nischwitz, Plant Parasitic Nematodes in Sustainable Agriculture of north America, Springer, 2018, 113–130. DOI: 10.1007/978-3-319-99585-4_5.
[5] P.V. Toan, The situation of pesticide use and several of reduced measures for improper pesticide use in rice production in the Mekong Delta, Can Tho University Journal of Science 28 (2013) 47–53 (in Vietnamese).
[6] Z. A. Siddiqui, I. Mahmood, Role of bacteria in the management of plant parasitic nematodes: A review, Bioresour. Technol. 69 (1999) 167–179. DOI: 10.1016/S0960-8524(98)00122-9.
[7] N.T. Duyen, Plant-parasitic nematodes on carots in Vietnam and testing biological measures in controlling them, PhD thesis, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 2019 (in Vietnamese).
[8] L.T.M. Linh, N.T. Duyen, T.Q. Phap, N.T.P. Anh, and P.V. Ty, Biologycal control of Meloidogyne incognita on Coffee by Paecilomyces javanicus, Vietnam Journal of Biotechnology 13 (2015) 421–424 (in Vietnamese).
[9] R. Sikora, S. Kiewnick, Evaluation of Paecilomyces lilacinus strain 251 for the biological control of the northern root-knot nematode Meloidogyne hapla Chitwood, Nematology 8 (2006) 69–78. DOI: 10.1163/1568 54106776179926.
[10] A. Khan, K.L. Williams, H.K.M. Nevalainen, Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles, Biol. Control, 31 (2004) 346–352. DOI: 10.1016/j.biocontrol.2004. 07.011.
[11] T.T. Thao, V.Q. Canh, N.T.T. Nga, Isolation and selection of promising antagnonistic Actinomyces against nematodes Pratylenchus sp. in laboratory condition, Can Tho University Journal of Science 55 2B (2019) 19–27 (in Vietnamese).
[12] P.P.S. Baghel, D.S. Bhatti, and B.L. Jalali, Interaction of VA mycorrhizal and Tylenchulus semipenetrans on citrus. In: Jalali BL, Chand H (eds) Current trends in mycorrhizal research. Proc Natl Conf on Mycorrhiza, Hisar, India, 1990.
[13] I. Ortas, Mycorrhiza in citrus: growth and nutrition. In Srivastava, A.K. (Ed.), Advances in Citrus Nutrition. Springer Science+Business Media B.V., Berlin, Heidelberg, 2012.
[14] S.G. Pau, S. Leong, C. Teck, S.K. Wong, L. Eng, M. Jiwan, N.M. Majid, Isolation of Indigenous Strains of Paecilomyces lilacinus with Antagonistic Activity against Meloidogyne incognita, Int. J. Agric. Biol. 2 (2012).
[15] C. Calvet, J. Pinochet, A. Camprubí, C. Fernández, Increased tolerance to the root-lesion nematode Pratylenchus vulnus in mycorrhizal micropropagated BA-29 quince rootstock, Mycorrhiza 5 (1995) 253-258. DOI: 10.1007/ BF 00204958.
[16] İ.İ. Kepenekç, D.E.Ğ.U.Ş, Effects of some plant extracts on root-knot nematodes invitro and invivo conditions, Turkish J. Entomol., 40 (2016) 3–14.
[17] Y. Spiegel, E. Cohn, I. Chet, Use of Chitin for Controlling Heterodera avenae and Tylenchulus semipenetrans, J. Nematol., 21 (1989) 419–41922.
[18] M. Abd-Elgawad, N. El-Mougy, N. El-Gamal, M. Abdel-Kader, and M. Mohamed, Protective treatments against soilborne pathogens in citrus orchards, J. Plant Prot. Res., 50 (2010) 477–484. DOI: 10.2478/v10045-010-0079-0.
[19] H.H.M. Al Ajrami, Evaluation the Effect of Paecilomyces lilacinus as a Biocontrol Agent of Meloidogyne javanica on Tomato in Gaza Strip, Islam. Univ. Res. Postgrad. Aff. Fac. Sci., 2016.
[20] N.V. Thiep, N.H. La, P.H. Quang, N.T.T. Ha, Study on antifungal activities of Chaetomium globosum in major fungal pathogens of tea, Second National Conference on Crop Science, VAAS (2016) 1003–1007 (in Vietnamese).
[21] W. Zhou, J.L. Starr, J.L. Krumm, G.A. Sword, The fungal endophyte Chaetomium globosum negatively affects both above and belowground herbivores in cotton, FEMS Microbiol. Ecol. 92 (2016) 1–22. DOI: 10.1093/femsec/fiw158.
[22] Y. Yang, X. Han, Y. Liang, A. Gosh, J. Chen, and M. Tang, The combined effects of Arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L., PLoS One 10 (2015) 12.
[23] M.Y. Hee, L.K. Bae, K.Y. Jun, K.Y. Mo, Current Status of EM (Effective Microorganisms) Utilization, KSBB Journal, Korean Soc. Biotechnol. Bioengingeering 26 (2011) 365–373.