Dang Viet Quang, Dao Van Duong, Vu Thi Hong Ha, Dao Sy Duc, Tran Thi Ngoc Dung, Mohammad R.M. Abu-Zahra

Main Article Content


Amine-mesoporous silica has been considered as a promising CO2 adsorbent with high potential for the reduction of energy consumption and CO2 capture cost; however, its stability could greatly vary with synthetic method. In this study, adsorbents prepared by impregnating different amines including polyethylenimine (PEI) and 3-aminopropyltriethoxysilane (APTES) onto mesoporous silica were used to evaluate the effect of amines selection on the stability of adsorbents used in CO2 capture process. Results revealed that APTES impregnated mesoporous silica (APTES-MPS) is more stable than PEI-impregnated mesoporous silica (PEI-MPS); APTES-MPS was thermally decomposed at ≈280 oC, while PEI-MPS was thermally decomposed at ≈180 oC only. PEI-MPS was particularly less stable when operating under dry condition; its CO2 adsorption capacity reduced by 22.1% after 10 adsorption/regeneration cycles, however, the capacity can be significantly improved in humid condition. APTES-MPS showed a greater stability with no significant reduction in CO2 capture capacity after 10 adsorption/regeneration cycles. In general, APTES-MPS adsorbent possesses a higher stability compared to PEI-MPS thanks to the formation of chemical bonds between amino-functional groups and mesoporous silica substrate.

Keywords: Mesoporous silica; CO2 capture; Adsorption; Regeneration; Emission.


NOAA, Atmospheric CO2 at Mauna Loa Observatory cited on 07/8/2019. https://www.esrl.noaa.gov/ gmd/ccgg/trends/.
[2] J.R. Petit, J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. PÉpin, C. Ritz, E. Saltzman, M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature 399 (1999) 429-436. https:// doi.org/10.1038/20859.
[3] M. Ranjan, H.J. Herzog, Feasibility of air capture, Energy Procedia 4 (2011) 2869-2876. https://doi. org/10.1016/j.egypro.2011.02.193.
[4] M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, N. Mac Dowell, Carbon capture and storage (CCS): the way forward, Energy & Environmental Science 11 (2018) 1062-1176. https://doi.org/10.1039/C7EE02342A.
[5] E. Adu, Y. Zhang, D. Liu, Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry, The Canadian Journal of Chemical Engineering 97 (2019) 1048-1076. https://doi.org/10.1002/cjce.23393.
[6] D.W. Keith, Why Capture CO2 from the Atmosphere? Science 325 (2009) 1654-1655. https://doi.org/10.1126/science.1175680.
[7] M.R.M. Abu-Zahra, L.H.J. Schneiders, J.P.M. Niederer, P.H.M. Feron, G.F. Versteeg, CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine, International Journal of Greenhouse Gas Control 1 (2007) 37-46. https:// doi.org/10.1016/S1750-5836(06)00007-7.
[8] N. El Hadri, D.V. Quang, E.L.V. Goetheer, M.R.M. Abu Zahra, Aqueous amine solution characterization for post-combustion CO2 capture process, Applied Energy 185 (2017) 1433-1449. https://doi.org/10.1016/j.apenergy.2016.03.043.
[9] S. Zhang, C. Chen, W.-S. Ahn, Recent progress on CO2 capture using amine-functionalized silica, Current Opinion in Green and Sustainable Chemistry 16 (2019) 26-32. https://doi.org/10. 1016/j.cogsc.2018.11.011.
[10] D.V. Quang, A.V. Rabindran, N. El Hadri, M.R. Abu-Zahra, Reduction in the regeneration energy of CO2 capture process by impregnating amine solvent onto precipitated silica, European Scientific Journal 9 (2013) 82-102.
[11] D.V. Quang, M. Soukri, J. Tanthana, P. Sharma, T.O. Nelson, M. Lail, L.J. Coleman, M.R. Abu-Zahra, Investigation of CO2 adsorption performance and fluidization behavior of mesoporous silica supported polyethyleneimine, Powder Technology, 301 (2016) 449-462. https:// doi.org/10.1016/j.powtec.2016.06.027.
[12] C. Chen, S.-T. Yang, W.-S. Ahn, R. Ryoo, Amine -impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity, Chemical Communications, 24 (2009) 3627-3629. https://doi.org/10.1039/B905589D.
[13] A. Zhao, A. Samanta, P. Sarkar, R. Gupta, Carbon Dioxide Adsorption on Amine-Impregnated Mesoporous SBA-15 Sorbents: Experimental and Kinetics Study, Industrial & Engineering Chemistry Research 52 (2013) 6480-6491. https:// doi.org/10.1021/ie3030533.
[14] T.O. Nelson, L.J.I. Coleman, A. Kataria, M. Lail, M. Soukri, D.V. Quang, M.R.M.A. Zahra, Advanced Solid Sorbent-Based CO2 Capture Process, Energy Procedia 63 (2014) 2216-2229. https://doi.org/10.1016/j.egypro.2014.11.241.
[15] M. Czaun, A. Goeppert, R.B. May, D. Peltier, H. Zhang, G.K.S. Prakash, G.A. Olah, Organoamines-grafted on nano-sized silica for carbon dioxide capture, Journal of CO2 Utilization, 1 (2013) 1-7. https://doi.org/10.1016/ j.jcou.2013.03.007.
[16] D.V. Quang, T.A. Hatton, M.R.M. Abu-Zahra, Thermally Stable Amine-Grafted Adsorbent Prepared by Impregnating 3-Aminopropyltriethoxysilane on Mesoporous Silica for CO2 Capture, Industrial & Engineering Chemistry Research 55 (2016) 7842-7852. https:// doi.org/10.1021/acs.iecr.5b04096
[17] R.B. Vieira, P.A.S. Moura, E. Vilarrasa-García, D.C.S. Azevedo, H.O. Pastore, Polyamine-Grafted Magadiite: High CO2 Selectivity at Capture from CO2/N2 and CO2/CH4 Mixtures, Journal of CO2 Utilization 23 (2018) 29-41. https: //doi.org/10.1016/j.jcou.2017.11.004.
[18] Y. Kong, G. Jiang, Y. Wu, S. Cui, X. Shen, Amine hybrid aerogel for high-efficiency CO2 capture: Effect of amine loading and CO2 concentration, Chemical Engineering Journal 306 (2016) 362-368. https://doi.org/10.1016/j.cej.2016.07.092.
[19] K. Min, W. Choi, C. Kim, M. Choi, Oxidation-stable amine-containing adsorbents for carbon dioxide capture, Nature Communications 9: 726 (2018) 1-7. https://doi.org/10.1038/s41467-018-03123-0.
[20] S. Ichikawa, T. Seki, M. Tada, Y. Iwasawa, T. Ikariya, Amorphous nano-structured silicas for high-performance carbon dioxide confinement, Journal of Materials Chemistry 20 (2010) 3163-3165. https://doi.org/10.1039/C0JM00164C