Do Thi Cam Van, Tran Dang Thuan, Nguyen Quang Tung

Main Article Content

Abstract

Increasing accumulation of CO2 in the atmosphere mainly caused by fossil fuels combustion of human activities have resulted in adverse global warming. Therefore, searching for treatment methods for effective utilization of CO2 have received a great attention worldwide. Among various methods (e.g., adsorption, absorption, storage, membrane technologies, etc.) have been developed and applied, the sequestration of CO2 using microalgae has recently emerged as an alternatively sustainable approach. In this work, a green microalgal strain Chlorella sorokiniana TH01 was used to investigate its capability in sequestration of CO2 in laboratory scale. Results indicated that the C. sorokiniana TH01 grew well under a wide range of CO2 concentration from 0.04% to 20% with maximum growth was achieved under CO2 aeration of 15%. In a single photobioreactor (PBR) with 10 min empty bed residence time (EBRT), the C. sorokiniana TH01 only achieved CO2 fixation efficiency of 6.33% under continuous aeration of 15% CO2. Increasing number of PBRs to 15 and connected in a sequence enhanced mean CO2 fixation efficiency up to 82.64%. Moreover, the CO2 fixation efficiency was stable in the range of 78.67 to 91.34% in 10 following days of the cultivation. Removal efficiency of NO3--N and PO43--P reached 82.54 – 90.25% and 95.33 – 98.02%, respectively. Our trial data demonstrated that the C. sorokiniana TH01 strain is a promising microalgal for further research in simultaneous CO2 mitigation via CO2 sequestration from flue gas as well as nutrients recycling from wastewaters.


Keywords: Carbon dioxide, C. sorokiniana TH01, Photobioreactors, Sequestration, Nutrients removal.

References

J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program, Int. J. Greenhouse Gas Control 2 (2008) 9-20. https://doi.org/10.1016/ S1750-5836(07)00094-1.
[2] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sust. Energ. Rev. 39 (2014) 426-443. https://doi.org/10. 1016/j.rser.2014.07.093.
[3] J. Singh, D.W. Dhar, Overview of carbon capture technology: microalgal biorefinery concept and state-of-the-art, Front. Mar. Sci. 6 (2019) 1-9. https:// doi.org/10.3389/fmars.2019.00029.
[4] N. Usui, M. Ikenouchi, The biological CO2 fixation and utilization project by RITE(1)-Highly-effective photobioreactor system-, Energy Convers. Manage. 38 (1997) S487-S492. https:// doi.org/10.1016/S0196-8904(96)00315-9.
[5] S.A. Razzak, M.M. Hossain, R.A. Lucky, A.S. Bassi, H. de Lasa, Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing - A review, Renew. Sust. Energ. Rev. 27 (2013) 622-653. https://doi.org/ 10.1016/j.rser.2013.05.063.
[6] W.Y. Cheah, P.L. Show, J.S. Chang, T.C. Ling, J.C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Bioresour. Technol. 184 (2015) 190-201. https://doi.org/10. 1016/j.biortech.2014.11.026.
[7] J. Doucha, K. Lívanský, Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate, J. Appl. Phycol. 18 (2006) 811-826. https:// doi.org/10.1007/s10811-006-9100-4.
[8] Z. Liu, F. Zhang, F. Chen, High throughput screening of CO2-tolerating microalgae using GasPak bags, Aquatic Biosystems 9 (2013) 23. https://doi.org/10.1186/2046-9063-9-23.
[9] D.J. Farrelly, L. Brennan, C.D. Everard, K.P. McDonnell, Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor, Appl. Microbiol. Biotechnol. 98 (2014) 3157-3164. https://doi.org/10.1007/s00253-013-5322-y.
[10] F.F. Li, Z.H. Yang, R. Zeng, G. Yang, X. Chang, J.B. Yan, Y.L. Hou, Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber, Ind. Eng. Chem. Res. 50 (2011) 6496-6502. https://doi.org/10.1021/ie200040q.
[11] D. Tang, W. Han, P. Li, X. Miao, J. Zhong, CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels, Bioresour. Technol. 102 (2011) 3071-3076. https://doi.org/ 10.1016/j.biortech.2010.10.047.
[12] S.H. Ho, W.M. Chen, J.S. Chang, Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production, Bioresour. Technol. 101 (2010) 8725-8730. https://doi.org/ 10.1016/j.biortech.2010.06.112.
[13] D.K. Dang, V.T. Tran, T.C. Nguyen, T.A. Do, T.T. Dang, T.K. Hoang, T.T. Le, T.N. Vu, T.C. Mai, V.V. Nguyen, Utilization of CO2 captured from the coal-fired fuel gas for growing Spirulina platensis SP4, J. Sci. Tech. 49 (2011) 65-72. https://doi.org/ 10.11648/j.ajep.20160506.12.
[14] D.D. Kim, B.T. Kim Anh, N.T. Cu, T.T. Minh Nguyet, D.D. Hong, M.T. Chinh, D.T. Thom, N.M. Chuyen, D.T. Oanh, Utilization of CO2 captured from the coal-fired flue gas by catalyst - adsorption method for growing Spirulina having high nutritive value, J. Biol. 35 (2013) 320-327. https://doi.org/ 10.15625/0866-7160/v35n3.3384.
[15] O.T. Doan, A.K.T. Bui, K.T. Hoang, C.H. Nguyen, T.T. Dang, H.D. Dang, N.T. Vu, K. D. Dang, Utilization of carbon dioxide from coal-firing flue gas for cultivation of Spirulina platensis, American J. Environ. Prot. 5 (2016) 152-156. https://doi.org/ 10.11648/j.ajep.20160506.12.
[16] A.K. Sharma, P.K. Sahoo, S. Singhal, A. Patel, Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp., 3 Biotech 6 (2016) 116-116. https:// doi.org/10.1007/s13205-016-0434-6.
[17] Y.K. Lee, W. Chen, H. Shen, D.X. Han, Y. Li, H.D.T. Jones, J.A. Timlin, Q. Hu, Basic Culturing and Analytical Measurement Techniques, in: Q. Hu and A. Richmond (2nd Ed.) Handbook of Microalgal Culture, John Wiley & Sons, Ltd, West Sussex, UK, 2013, pp. 37-68.
[18] M. Ma, C. Wei, H. Wang, C. Sha, M. Chen, Y. Gong, Q. Hu, Isolation and evaluation of a novel strain of Chlorella sorokiniana that resists grazing by the predator Poterioochromonas malhamensis, Algal Res. 38 (2019) 101429. https://doi.org/ 10.1016/j.algal.2019.101429.
[19] J. Cheng, Y. Huang, J. Feng, J. Sun, J. Zhou, K. Cen, Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2, Bioresour. Technol. 136 (2013) 496-501. https://doi.org/ 10.1016/j.biortech.2013.03.072.
[20] E.W. Rice, R.B. Baird, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association, American Water Works Association, Water Environment Federation, 2017.
[21] L.M.L. Laurens, T.A. Dempster, H.D.T. Jones, E.J. Wolfrum, S. Van Wychen, J.S.P. McAllister, M. Rencenberger, K.J. Parchert, L.M. Gloe, Algal biomass constituent analysis: Method uncertainties and investigation of the underlying measuring chemistries, Anal. Chem. 84 (2012) 1879-1887. https://doi.org/10.1021/ac202668c.
[22] M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356. https://doi.org/ 10.1021/ac60111a017.
[23] J.A. Berges, A.E. Fisher, P.J. Harrison, A comparison of Lowry, Bradford and Smith protein assays using different protein standards and protein isolated from the marine diatom Thalassiosira pseudonana, Mar. Biol. 115 (1993) 187-193. https://doi.org/10.1007/BF00346334.
[24] A. Toledo-Cervantes, M. Morales, E. Novelo, S. Revah, Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus, Bioresour. Technol. 130 (2013) 652-658. https://doi.org/10. 1016/j.biortech.2012.12.081.
[25] S.H. Ho, W.M. Chen, J.S. Chang, Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production, Bioresour. Technol. 101 (2010) 8725-8730. https://doi.org/10. 1016/j.biortech.2010.06.112.
[26] C.F. Gonçalves, T. Menegol, R. Rech, Biochemical composition of green microalgae Pseudoneochloris marina grown under different temperature and light conditions, Biocatal. Agric. Biotechnol. 18 (2019) 101032. https://doi.org/10.1016/j.bcab.2019. 101032.
[27] W. Michelon, M.L.B. Da Silva, M.P. Mezzari, M. Pirolli, J.M. Prandini, H.M. Soares, Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate, Appl. Biochem. Biotechnol. 178 (2016) 1407-1419. https://doi.org/10.1007/s12010-015-1955-x.
[28] Y. Zhang, H. Wu, C. Yuan, T. Li, A. Li, Growth, biochemical composition, and photosynthetic performance of Scenedesmus acuminatus during nitrogen starvation and resupply, J. Appl. Phycol. 31 (2019) 2797-2809. https://doi.org/10.1007/s108 11-019-01783-z.
[29] K. Chokshi, I. Pancha, A. Ghosh, S. Mishra, Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus, Biotechnol Biofuels 10 (2017) 60. https://doi.org/10.1186/s13068-017-0747-7.
[30] C.Y. Chen, X.Q. Zhao, H.W. Yen, S.H. Ho, C.L. Cheng, D.J. Lee, F.W. Bai, J.S. Chang, Microalgae-based carbohydrates for biofuel production, Biochem. Eng. J. 78 (2013) 1-10. https: //doi.org/10.1016/j.bej.2013.03.006.
[31] M.A. Alam, T. Yuan, W. Xiong, B. Zhang, Y. Lv, J. Xu, Process optimization for the production of high-concentration ethanol with Scenedesmus raciborskii biomass, Bioresour. Technol. 294 (2019) 122219. https://doi.org/10.1016/j.biortech. 2019.122219.
[32] M.P. Caporgno, A. Mathys, Trends in microalgae incorporation into innovative food products with potential health benefits, Front. Nutr. 5 (2018) 1-10. https://doi.org/10.3389/fnut.2018.00058.
[33] Â.P. Matos, Microalgae as a potential source of proteins, in: C.M. Galanakis (Ed.), Proteins: Sustainable Source, Processing and Applications, Academic Press, 2019, pp. 63-96.
[34] J. Cheng, Y. Huang, J. Feng, J. Sun, J. Zhou, K. Cen, Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors, Bioresour. Technol. 144 (2013) 321-327. https://doi.org/10.1016/j.biortech. 2013.06.122.