Luong Thi Thu Hoai, Pham Nguyen Ha Vu, Nguyen Dinh Nguyen, Hoang Thi Phuong Thao, Nguyen Van Vuong

Main Article Content

Abstract

The Song Tranh 2 hydropower reservoir was built in Tra My area, Quang Nam province, composing magmatic and high-grade metamorphic rocks of the northern part of the Kon Tum massif. Since the reservoir was put into operation, induced earthquakes have occurred in the Song Tranh 2 hydropower reservoir and its vicinity. Tectonically, the northwest-southeast to east-west striking faults developed strongly. Detailed analysis of slickensides and attitude of faults occurring in the studied area have shown that the northwest-southeast striking faults are reactivated as dextral ones during the Pliocene-Quaternary up to the present day. Based on the geometric distribution of the fault network, kinematic characteristics, and the youngest tectonic stress regime, we computed the distribution of tectonic stress in the studied area. Computation results show two positive anomalies of stress directly related to the northwest-southeast faults numbered 2, 10, 11a, 11b and sub-latitude striking fault numbered 1. These faults run in line with the local river channels and are likely to reactivate and generate induced earthquakes.


 

Keywords: Song Tranh 2, hydropower reservoir; reactive fault, tectonic stress, induced earthquake.

References

[1] T. V. Tri, Geology of Vietnam (North part), Topographical House for Geological Map of The Geological Department, Hanoi Vietnam, 1979.
[2] P. Tapponnier, G. Peltzer, R. Armijo, on the Mechanics of the Collision between India and Asia, M. P. Coward, C. R Alision, Collision Tectonics, Blackwell Scientific Publications, London, 1986,
pp. 115-157, https://doi.org/10.1144/GSL.SP.1986.019.01.07.
[3] L. T. T. Hoai, N. V. Vuong, B. V. Dong, Fault and Faulting Characteristics in Relationship with Reservoir Triggered Earthquakes in the Song Tranh 2 Hydropower Plan, Bac Tra My District, Quang Nam Province, VNU Journal of Science: Earth and Environmental Sciences, Vol. 30, No. 2S, 2014,
pp. 21-32 (in Vietnamese).
[4] M. L. Bell, A. Nur, Strength Changes due to Reservoir-Induced Pore Pessure and Stresses and Application to Lake Oroville, Journal of Geophysical Research: Solid Earth, Vol. 83, No. B9, 1978,
pp. 4469-4485, https://doi.org/10.1029/JB083iB09p04469.
[5] Y. Huang, W. L. Ellsworth, G. C. Beroza, Stress Drops of Induced and Tectonic Earthquakes in the Central United States are Indistinguishable. Science Advances, Vol. 3, No. 8, 2017, pp. 1-7, https://doi.org/10.1126/sciadv.1700772.
[6] C. D. Trieu, C. D. Trong, L. V. Dung, T. A. Tuan,
D. Q. Van, H. V. Long, Triggered Earthquake Study in Tranh River (Vietnam) Hydropower Reservoir, Journal of Geological Society of India, Vol. 84, No. 2, 2014, pp. 319-325, https://doi.org/10.1007/s12594-014-0135-x.
[7] N. V. Giang, J. Wiszniowski, B. Plesiewicz,
G. Lizurek, D. Q. Van, L. Q. Khoi, Some Characteristics of Seismic Activity in The Song Tranh 2 Reservoir, Quang Nam, Vietnam by Local Seismic Network Data, Earth Sciences, Vol. 4, No. 3, 2015, pp. 101-111, https://doi.org/10.11648/j.earth.20150403.13.
[8] G. Lizurek, J. Wiszniowski, N. V. Giang,
B. Plesiewicz, D. Q. Van, Clustering and Stress Inversion in the Song Tranh 2 Reservoir, Vietnam, Bulletin of the Seismological Society of America, Vol. 107, No. 6, 2017, pp. 2636-2648, https://doi.org/10.1785/0120170042.
[9] K. Gahalaut, T. A. Tuan, N. P. Rao, Rapid and Delayed Earthquake Triggering by the Song Tranh 2 Reservoir, Vietnam, Bulletin of the Seismological Society of America, Vol. 106, No. 5, 2016,
pp. 2389-2394, http://doi.org/10.1785/0120160106.
[10] T. A. Tuan, N. P. Rao, K. Gahalaut, C. D. Trong,
L. V. Dung, C. Chien, K. Mallika, Evidence that Earthquakes have been Triggered by Reservoir in The Song Tranh 2 Region, Vietnam, Journal of Seismology, Vol. 21, 2017, pp. 1131-1143, https://doi.org/10.1007/s10950-017-9656-2.
[11] M. Faure, V. V. Nguyen, L. T. T. Hoai, C. Lepvrier, Early Paleozoic or Early-Middle Triassic Collision Between the South China and Indochina blocks: the Controversy Resolved? Structural Insights from the Kon Tum Massif (Central Vietnam), Journal of Asian Earth Sciences, Vol. 166, 2018 pp. 162-180, https://doi.org/10.1016/j.jseaes.2018.07.015.
[12] H. T Tran, K. Zaw, J. A. Halpin, T. Manaka,
S. Meffre, C. K. Lai, Y. Lee, H. V. Le, S. Dinh, The Tam Ky-Phuoc Son Shear zone in Central Vietnam: Tectonic and Metallogenic Implications, Gondwana Research, Vol. 26, No. 1, 2014, pp. 144-164, https://doi.org/10.1016/j.gr.2013.04.008.
[13] T. Usuki, C. Y. Lan, T. F. Yui, Y. Iizuka, T. V. Vu,
T. A. Tuan, K. Okamoto, J. L. Wooden, J. G. Liou, Early Paleozoic Medium-Pressure Metamorphism in Central Vietnam: Evidence from SHRIMP U-Pb Zircon Ages, Geosciences Journal, Vol. 13, 2009,
pp. 245-256, https://doi.org/10.1007/s12303-009-0024-2.
[14] T. V. Tri, M. Faure, N.V. Vuong, H. H. Bui,
M. B. W. Fyhn, T. Q. Nguyen, C. Lepvrier,
T. B. Thomsen, K. Tani, P. Charusiri, Neoproterozoic to Early Triassic Tectono-Stratigraphic Evolution of Indochina and Adjacent Areas: A Review with New Data, Journal of Asian Earth Sciences, Vol. 191, 2020, pp. 104231. https://doi.org/10.1016/j.jseaes.2020.104231.
[15] V. V Tich, H. Maluski, N. V. Vuong, Ar-Ar Age of Metamorphic and Mylonitic Rocks in Northern Part of The Kon Tum Massif: Evidence for the Indosinian Movement Along Shear Zones between Kon Tum Massif and Truong Son belt, VNU Journal of Science: Earth Sciences, Vol. 23, 2007, pp. 253-264.
[16] V. V. Tich, N. V. Vuong, P. T. Thi, H. Maluski,
C. Lepvrier, Ar-Ar Age of Mylonites and Geodynamic Significance of Tra Bong Shear zone, Middle Trung Bo, Journal of Geology Serie B (Geological Survey of Viet Nam), Vol. 285,
No. 11-12, 2004, pp. 143-149.
[17] C. Lepvrier, H. Maluski, V. V. Tich, P. T. Thi,
N. V. Vuong, The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif): Implication for the Geodynamic Evolution of Indochina, Tectonophysics, Vol. 393, No. 1-4, 2004, pp. 87-118, https://doi.org/10.1016/j.tecto.2004.07.030.
[18] N. V. Trang, Geological and Mineral Resources Map, Scale 1:200.000, Sheet Serie Hue-Quang Ngai, Gerneral Department of Geology and Mineral Resources Hanoi, 1986.
[19] P. Tapponnier, R. Lacassin, P. H. Leloup, U. Schärer, D. Zhong, H. Wu, X. Liu, S. Ji, Z. Lianshang,
Z. Jiayou, The Ailao Shan/Red River Metamorphic Belt: Tertiary Left Lateral Shear between Indochina and South China, Nature, Vol. 343, 1990,
pp. 431-437, https://doi.org/10.1038/343431a0.
[20] L. Jolivet, H. Maluski, O. Beyssac, B. Goffé,
C. Lepvrier, P. T. Thi, N. V. Vuong, Oligocene-Miocene Bu Khang Extensional Gneiss Dome in Vietnam: Geodynamic Implication, Geology,
Vol. 27, No. 1, 1999, pp. 67-70, https://doi.org/10.1130/00917613(1999)027<0067:OMBKEG>2.3.CO;2
[21] D. Roques, C. Rangin, P. Huchon, Geometry and Sense of Motion Along The Vietnam Continental Margin: Onshore/Offshore Da Nang Area, Bulletin de la Géologie de la France, Vol. 168, No. 4, 1997,
pp. 413-422.
[22] C. Rangin, C. P. Huchon, X. Le Pichon, H. Bellon,
C. Lepvrier, D. Roques, N. D. Hoe, P. V. Quynh, Cenozoic Deformation of Central and South Vietnam, Tectonophysics, Vol. 251, 1995, pp. 179-196, https://doi.org/10.1016/0040-1951(95) 00006-2.
[23] N. V. Vuong, L. T. T. Hoai, Cenozoic Paleostress Evolution in South Central Vietnam: Implication for Changing Dynamics of Faulting along the Eastern Indochina Continental Margin, Journal of Asian Earth Sciences, Vol. 185, 2019, pp. 104006, https://doi.org/10.1016/j.jseaes.2019.104006.
[24] E. Carey, B. Brunier, Analyse Théorique et Numérique d'une Modèle Mécanique Élémentaire Appliqué à l'étude d'une Population de Faille, Comptes Rendus de l'Académie des Sciences de Paris, Vol. 279, 1974, pp. 891-894.
[25] J. Angelier, Sur L'analyse De Mesures Recueillies Dans Des Sites Faillés: L'utilité d'une Confrontation Entre les Méthodes Dynamique et Cinématique, Comptes Rendus de l'Académie des Sciences de Paris, Vol. 281, 1975, pp. 1805-1808.
[26] J. Angelier, Determination of The Mean Principal Direction of Stresses for a Givent Fault Population, Tectonophysics, Vol. 56, No. 3-4, 1979, pp. T17-T26, https://doi.org/10.1016/0040-1951(79)90081-7.
[27] P. T. Trinh, An Inverse Problem for the Determination of the Stress Tensor from Polyphased Fault Sets and Earthquake Focal Mechanisms, Tectonophysics,
Vol. 224, No. 4, 1993, pp. 393-411, https://doi.org/10.1016/0040-1951(93)90040-Q.
[28] J. Angelier, Tectonic Analysis of Fault Slip Data Sets, Journal of Geophysical Research: Solid Earth,
Vol. 89, No. B8, 1984, pp. 5835-5848, https://doi.org/10.1029/JB089iB07p05835.
[29] J. Angelier, From Orientation to Magnitudes in Paleostress Determination using Fault Slip Data, Journal of Structural Geology, Vol. 11, No. 1-2, 1989, pp. 37-50, https://doi.org/10.1016/0191-8141(89)90034-5.
[30] J. Angelier, Inversion of Field Data in Fault Tectonics to Obtain The Regional Stress - III. A New Rapid Direct Inversion Method by Analytical Means, Geophysical Journal International, Vol. 103, 1990, pp. 363-376, https://doi.org/10.1111/j.1365-246X.1990.tb01777.x
[31] A. Etchecopar, G. Vasseur, M. Daignieres, An Inverse Problem in Microtectonics for The Determination of Stress Tensors from Fault Striation Analysis, Journal of Structural Geology, Vol. 3,
No. 1, 1981, pp. 51-65, https://doi.org/10.1016/0191-8141(81)90056-0.
[32] M. Nemcok, D. Kovác, R. J. Lisle, A Stress Inversion Procedure for Polyphase Calcite Twin and Fault Slip Data Sets, Journal of Structural Geology, Vol. 21,
No. 6, 1999, pp. 597-611, https://doi.org/10.1016/S0191-8141(99)00053-X.
[33] A. Yamaji, K. Sato, Stress Inversion Meets Plasticity Theory: A Review of the Theories of Fault Slip Analysis from the Perspective of the Deviatoric Stress-Strain Space, Journal of Structural Geology, Vol. 125, 2019, pp. 296-310, https://doi.org/10.1016/j.jsg.2019.03.003.
[34] O. Lacombe, Do Fault Slip Data Inversions Actually Yield “Paleostresses” That Can Be Compared with Contemporary Stresses? A Critical Discussion, Comptes Rendus Geoscience,
Vol. 344, No. 3, 2012, pp. 159-173, https://doi.org/10.1016/j.crte.2012.01.006.
[35] Y. Okada, Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Bulletin of the Seismological Society of America, Vol. 82, No. 2, 1992, pp. 1018-1040.
[36] Z. K. Mildon, G. P. Roberts, J. P. F. Walker, S. Toda, Coulomb Pre-Stress and Fault Bends are Ignored Yet Vital Factors for Earthquake Triggering and Hazard, Nature Communications, Vol. 10, 2019, pp. 2744, https://doi.org/10.1038/s41467-019-10520-6.
[37] J. Lin, R. S. Stein, Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction between the Southern San Andreas and Nearby Thrust and Strike-Slip Faults, Journal of Geophysical Research: Solid Earth, Vol. 109, No. B02303, 2004, https://doi.org/10.1029/2003JB002607.
[38] J. Angelier, Paleostress Analysis of Small-Scale Britle Structures, P. Hancock, Continental Deformation, Pergamon Press, 1994, pp. 53-100.
[39] G. C. P. King, R. S. Stein, J. Lin, Static Stress Changes and the Triggering of Earthquakes, Bulletin of the Seismological Society of America, Vol. 84, No. 3, 1994, pp. 935-953.
[40] P. T. Trinh, Cenozoic Stress Field in the Northwestern Region of Viet Nam, Journal of Geology Serie B (Geological Survey of Viet Nam), Vol. 3-4, 1994, pp. 12-18.
[41] P. T. Trinh, N. V. Huong, N. V. Liem, T. D. To,
V. Q. Hai, H. Q. Vinh, B. V. Thom, N. Q. Xuyen,
N. V. Thuan, B. T. Thao, Neotectonics and Geological Hazards in Vietnam Sea and Surroundings Vietnam, Journal of Earth Sciences, Vol. 33, No. 3, 2011, pp. 443-456, https://doi.org/10.15625/0866-7187/33/3/391 (In Vietnamese).
[42] P. T. Trinh, Recent Tectonics and Geodynamics of Vietnam Sea and Its Adjacent Areas, National Sciences and Technology Publishing House, Hanoi, (In Vietnamese), 2012.
[43] C. L. Bachmann, S. Wiemer, B. P. Goertz-Allmann, J. Woessner, Influence of Pore-Pressure on the Event-Size Distribution of Induced Earthquakes, Geophysical Research Letters, Vol. 39, No. L09302, 2012, pp. 9302, https://doi.org/10.1029/2012GL051480.
[44] G. Zhai, M. Shirzaei, M. Manga, X. Chen, Pore-Pressure Diffusion, Enhanced by Poroelastic Stresses, Controls Induced Seismicity in Oklahoma, PNAS, Vol. 116, No. 33, 2019, pp. 16228-16233, https://doi.org/10.1073/pnas.1819225116.
[45] P. Talwani, S. Acree, Pore Pressure Diffusion and the Mechanism of Reservoir-Induced Seismicity, Pure and Applied Geophysics, Vol. 122, 1984,
pp. 947-965, https://doi.org/10.1007/BF00876395.
[46] Q. Chen, A. Nur, Pore Fluid Pressure Effects in Anisotropic Rocks: Mechanisms of Induced Seismicity and Weak Faults, Pure and Applied Geophysics, Vol. 139, No. 3-4, 1992, pp. 463-479, https://doi.org/10.1007/BF00879947.