Nguyen Quoc Long, Tran Van Anh, Bui Khac Luyen

Main Article Content

Abstract

Mining-induced subsidence is often determined by field survey methods, e.g., using total station or global navigation satellite system (GNSS) technology. The advantage of these methods is high accuracy, but they are usually employed in a small-scale areas. Radar technology has been developed and applied to determine surface subsidence over a large area at a few millimeters accuracy. In this paper, 24 Sentinel-1B SAR images are used with the Permanent Scatter Interferometry (PSInSAR) method to determine the land subsidence of the Tan My-Thuong Tan quarries and surrounding areas in Binh Duong province, Vietnam. The results are compared with the average annual subsidence of 20 GNSS surveying points from January 2018 to March 2020. The correlation coefficient of annual average land subsidence of the two methods is bigger than 0.8, indicating the feasibility of applying the InSAR Sentinel-1 data processed by the PSInSAR method to determine the mining-induced subsidence of ground surfaces over quarries and surrounding areas.


 

Keywords: GNSS, PSInSAR, radar time series, Sentinel-1, subsidence.

References

[1] G. W. Bawden, M. R. Johnson, M. C. Kasmarek,
J. T. Brandt, C. S. Middleton, Investigation of Land Subsidence in The Houston-Galveston Region of Texas by Using The Global Positioning System and Interferometric Synthetic Aperture Radar, 1993-2000, Scientific Investigations Report, US Geological Survey, 2012, https://doi.org/10.3133/sir201 25211.
[2] P. Tizzani, P. Berardino, F. Casu, P. Euillades,
M. Manzo, G.P. Ricciardi, G. Zeni, R. Lanari, Surface Deformation of Long Valley Caldera and Mono Basin, California, Investigated with The SBAS-InSAR Approach, Remote Sensing of Environment, Vol. 108, No. 3, 2007, pp. 277-289, https://doi.org/10.1016/j.rse.2006.11.015.
[3] A. Aobpaet, M. C. Cuenca, A. Hooper,
I. Trisirisatayawong, InSAR Time-Series Analysis of Land Subsidence in Bangkok, Thailand, International Journal of Remote Sensing, Vol. 34, No. 8, 2013, pp. 2969-2982, https://doi.org/10. 1080/01431161.2012.756596.
[4] A. H. M. Ng, L. Ge, X. Li, H. Z. Abidin,
H. Andreas, K. Zhang, Mapping Land Subsidence in Jakarta, Indonesia Using Persistent Scatterer Interferometry (PSI) Technique with ALOS PALSAR, International Journal of Applied Earth Observation and Geoinformation, Vol. 1, No. 12, 2012, p. 232-242, https://doi.org/10.1016/j.jag. 2012.01.018.
[5] K. Yang, L. Yan, G. Huang, C. Chen, Z. Wu, Monitoring Building Deformation with InSAR: Experiments and Validation, Sensors, Vol. 16,
No. 12, pp. 1-16, 2016, https://doi.org/10.3390/s1612 2182.
[6] H. Akcin, H. Kutoglu, T. Deguchi, E. Koksal, Monitoring Subsidence Effects in The Urban Area of Zonguldak Hardcoal Basin of Turkey by InSAR-GIS Integration, Natural Hazards and Earth System Sciences, Vol. 10, No. 9, 2010, pp. 1807-1814, https://doi.org/10.5194/nhess-10-1807-2010.
[7] E. Chaussard, S. Wdowinski, E. C. Cano,
F. Amelung, Land Subsidence in Central Mexico Detected by ALOS InSAR Time-Series, Remote Sensing of Environment, Vol. 140, 2014,
pp. 94-106, https://doi.org/10.1016/j.rse.2013.08.038.
[8] Y. Chen, G. Zhang, X. Ding, Z. Li, Monitoring Earth Surface Deformations with InSAR Technology: Principles and Some Critical Issues. Journal of Geospatial Engineering, Vol. 2, No. 1, 2000, pp. 3-22.
[9] L. C. Graham, Synthetic Interferometer Radar for Topographic Mapping, Proceedings of The IEEE, Vol. 62, No. 6, 1974, pp. 763-768. https://doi.org/ 10.1109/PROC.1974.9516.
[10] T. V. Anh, S. Masumoto, V. Raghavan, K. Shiono, Spatial Distribution of Subsidence in Hanoi Detected by JERS-1 SAR Interferometry, Geoinformatics, Vol. 18, No. 1, 2007, pp. 3-13, https://doi.org/ 10.6010/geoinformatics.18.3.
[11] A. Ferretti, C. Prati, F. Rocca, Permanent Scatterers in SAR Interferometry, IEEE Transactions on Geoscience and Remote Sensing, 2001, Vol. 39, No. 1, pp. 8-20, http://doi.org/ 10.1109/36.898661.
[12] P. L. Quiroz, M. P. Doin, F. Tupin, P. Briole,
J. M. Nicolas, Time Series Analysis of Mexico City Subsidence Constrained by Radar Interferometry, Journal of Applied Geophysics, 2009, Vol. 69,
No. 1, pp. 1-15, https://doi.org/10.1016/j.jappgeo.2009. 02.006.
[13] G. Liu, X. Luo, Q. Chen, D. Huang, X. Ding, Detecting Land Subsidence in Shanghai by PS-Networking SAR Interferometry, Sensors, Vol. 8, No. 8, 2008, pp. 4725-4741, https://doi.org/10. 3390/s8084725.
[14] K. Hirose, Y. Maruyama, D. Murdohardono,
A. Effendi, H.Z. Abidin, Land Subsidence Detection Using JERS-1 SAR Interferometry, The 22nd Asian Conference on Remote Sensing, 2001.
[15] T. V. Anh, T. Q. Cuong , N. D. Anh, H. T. M. Dinh, T. T. Anh, N. N. Hung, L. T. T. Linh, Application of PSInSAR Method for Determining of Land Subsidence in Hanoi City by Cosmo-Skymed Imagery, Proceedings of GIS IDEAS 2016, 2016, Hanoi, Vietnam.
[16] L. V. Trung, N. C. Tang, Assessment of Capacity of Using Sentinel-1 Images in Monitoring Land Subsidence in Ho Chi Minh City. Science & Technology Development Journal-Science of The Earth & Environment, Vol. 2, No. 2, 2018
pp. 19-25, https://doi.org/10.32508/stdjsee.v2i2.490.
[17] B. X. Nam, T. V. Anh, B. K. Luyen, N. Q. Long, L. T. T. Ha, G. Ropesh. Mining-Induced Land Subsidence Detection by Persistent Scatterer InSAR and Sentinel-1: Application to Phugiao Quarries, Vietnam. Lecture Notes in Civil Engineering Book Series, Vol. 108, 2021,
pp. 1, Springer, Cham, https://doi.org/10.1007/ 978-3-030-60269-72.
[18] A. Sowter, M. B. C. Amat, F. Cigna, S. Marsh,
A. Athab, L. Alshammari, Mexico City Land Subsidence in 2014-2015 with Sentinel-1 IW TOPS: Results Using The Intermittent SBAS (ISBAS) Technique. International Journal of Applied Earth Observation and Geoinformation, Vol. 52, 2016, pp. 230-242, https://doi.org/ 10.1016/j.jag. 2016.06.015.
[19] Z. Du, L. Ge, A. H. M. Ng, Q. Zhu, X. Yang, L. Li, Correlating The Subsidence Pattern and Land Use in Bandung, Indonesia with Both Sentinel-1/2 and ALOS-2 Satellite Images. International Journal of Applied Earth Observation and Geoinformation, Vol. 67, 2018, pp. 54-68, https://doi.org/10.1016/ j.jag.2018.01.001.
[20] J. Baek, S. W. Kim, H. J. Park, H. S. Jung,
K. D. Kim, J. W. Kim, Analysis of Ground Subsidence in Coal Mining Area Using SAR Interferometry, Geosciences Journal, Vol. 12.
No. 3, 2008, pp. 277-284, https://doi.org/10.1007/s12303-008-0028-3.
[21] J. He, G. Liu, H. Yue, Monitoring Ground Subsidence in Mining Area Using Spaceborne InSAR Technology, 2009 Joint Urban Remote Sensing Event, IEEE, 2009, pp. 1-6, https://doi.org/10. 1109/URS.2009.5137668.
[22] X. Diao, K. Wu, D. Hu, L. Li, D. Zhou, Combining Differential SAR Interferometry and The Probability Integral Method for Three-Dimensional Deformation Monitoring of Mining Areas. International Journal of Remote Sensing, Vol. 37, No. 21, 2016, pp. 5196-5212, https://doi.org/10.1080/01431161.20 16.1230284.
[23] C. Ma, X. Cheng, Y. Yang, X. Zhang, Z. Guo,
Y. Zou, Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of The Small Baseline Subset - Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China. Remote Sensing, Vol. 8, No. 11, 2016, pp. 951, https://doi.org/10.3390/ rs8110951.
[24] A. Hooper, K. Spaans, D. Bekaert, M. C. Cuenca, M. Arıkan, A. Oyen, StaMPS/MTI Manual, Delft Institute of Earth Observation and Space Systems Delft University of Technology, Kluyverweg,
Vol. 1, 2010, pp 1-17.
[25] D. Blasco, M. Foumelis, C. Stewart,
A. Hooper, Measuring Urban Subsidence in The Rome Metropolitan Area (Italy) with Sentinel-1 Snap-Stamps Persistent Scatterer Interferometry, Remote Sensing, 2019, Vol. 11, No. 2, pp. 129, https://doi.org/10.3390/rs11020129.