Bui Hanh Mai, Dang Thanh Tu, Nguyen Duc Tam, Tran Thi Hang, Dinh Mai Van, Luu The Anh, Hoang Thi Thu Duyen

Main Article Content

Abstract

Quang Nam province located in the middle of Vietnam, has suffered an increasing drought for many years, this threatens the crop production. Drought severity seems to be added in by land use change from forest to horticultural land but the interactions among drought, land use change and soil biological properties remain elusive in this area. Therefore, the research aimed to evaluate drought occurence in Quang Nam and also the effect of land use change on soil respiration and microbial biomass. Three hypotheses were proposed as i) Drought tends to be more severe in future in Quang Nam but behaves differently between plain and mountainous areas; ii) Microbial respiration reduces with increasing drought severity but depending on land use types; and iii) Water stress (60% to 30% water holding capacity - WHC) induces reduction of microbial biomass which remains no changes as soil moisture reduces from 30% to 10% WHC. Forest land decreased by 8.34% from 2003 to 2013 but increased by up to 5.86% in 2018 compared to 2013. Drought severity level has decreased slightly during 2003 - 2019 but more concentrated in the coastal plain than mountainous area, mainly occurred in the dry season from February to July. Basal respiration (BR) decreased a half as soil moisture declined from 60% to 30% WHC and remained unchange given the soil moisture decreased to 10% WHC. The dramatic decrease of BR demonstrated a shock of microbial community to altered environment condition. The similarity of BR between two soil types implied more important role of drought impacts than land use conversion. The decrease of soil moisture resulted in the reduction in nutrient diffusion that cause difficulties for microorganisms to approach available nutrients in soil and negatively affecting microbial biomass synthesis. Higher microbial biomass nitrogen (MBN) in forest than pineapple might suggest that forest soil would be of advantage to sustain soil fertility and microbial activities than crop land in resistence to drought impacts. Briefly, interdisciplinary approach is critical in assessment of climate change impacts on C and N cycles in correspondence to land use changes.

Keywords: WHC, drought severity, microbial respiration, climate change, microbial biomass.

References

[1] C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. Mach, K. J. Plattner, S. K. Allen, M. Tignor, P. M. Midgley (eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [IPCC 2012], Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 8RU ENGLAND, Vol. 582, pp, 2012.
[2] P. R. Shukla, J. Skea, E. Calvo Buendia, V. M. Delmotte, H. O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. V. Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley (eds.), Summary for Policymakers. In: Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems [IPCC 2019], in Press, 2019.
[3] M. Collins, R. Knutti, J. Arblaster, J. L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W. J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A. J. Weaver, M. Wehner, Long-term Climate Change: Projections, Commitments and Irreversibility, In: T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2013, pp. 1029-1136.
[4] D. Z. Sun, I. M. Held, A Comparison of Modeled and Observed Relationships Between Inter Annual Variations of Water Vapor and Temperature, Journal of Climate, Vol. 9, No. 4, 1996,
pp. 665-675, https://doi.org/10.1175/1520-0442(1996)009<0665:ACOMAO>2.0.CO;2.
[5] FAO, Global Forest Resources Assessment 2005: Progress Towards Sustainable Forest Management. FAO Forestry Paper, Rome, Italy, Vol. 147, 2006.
[6] T. Ramesh, N. S. Bolan, M. B. Kirkham, H. Wijesekara, M. Kanchikerimath, C. R. Rao, S. Sandeep, J. Rinklebe, Y. S. Ok, B. U. Choudhury, H. Wang, C. Tang, X. Wang, Z. Song, O. W. Freeman II, Soil Organic Carbon Dynamics: Impact of Land use Changes and Management Practices: A Review, Advances in Agronomy,
Vol. 156, 2019, pp. 1-107, https://doi.org/10.1016/bs.agron.2019.02.001.
[7] T. A. McHugh, Z. Compson, N. V. Gestel, M. Hayer, L. Ballard, M. Haverty, J. Hines,
N. Irvine, D. Krassner, T. Lyons, E. J. Musta, M. Schiff, P. Zint, E. Schwartz, Climate Controls Prokaryotic Community Composition in Desert Soils of the Southwestern United States, FEMS Microbiology Ecology, Vol. 93, No. 10, 2017,https://doi.org/10.1093/femsec/fix116.
[8] J. B. Moon, D. H. Wardrop, M. A. V. Bruns, R. M. Miller, K. J. Naithani, Land-use and Land-Cover Effects on Soil Microbial Community Abundance and Composition in Headwater Riparian Wetlands, Soil Biology and Biochemistry, Vol. 97, 2016, pp. 215-233, https://doi.org/10.1016/j.soilbio.2016.02.021.
[9] A. Bissett, A. E. Richardson, G. Baker, P. H. Thrall, Long-term land Use Effects on Soil Microbial Community Structure and Function, Applied Soil Ecology, Vol. 51, 2011, pp. 66-78, https://doi.org/10.1016/j.apsoil.2011.08.010.
[10] J. Bauhus, D. Paré, L. Co^téc, Effects of Tree Species, Stand Age and Soil Type on Soil Microbial Biomass and its Activity in A Southern Boreal Forest, Soil Biology and Biochemistry,
Vol. 30, No. 8-9, 1998, pp. 1077-1089, https://doi.org/10.1016/S0038-0717(97)00213-7.
[11] H. Gibbs, A. Ruesch, F. Achard, M. K. Clayton,
P. Holmgren, N. Ramankutty, J. A. Foley, Tropical Forests Were the Primary Sources of New Agricultural Land in the 1980 and 1990. Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 38, 2010, pp. 16732-16737, https://doi.org/ 10.1073/pnas.0910275107.
[12] F. T. D. Vries, M. E. Liiri, L. Bjornlund, M. A. Bowker, S. Christensen, H. M. Setälä, R. D. Bardgett, Land use Alters the Resistance and Resilience of Soil Food Webs to Drought, Nature Climate Change, Vol. 2, No. 4, 2012, pp. 276-280, https://doi.org/10.1038/nclimate1368.
[13] D. Eckstein, V. Künzel, L. Schäfer, M. Winges, Global Climate Risk Index 2020 Germanwatch e.V. 2020. Available online: https://www.germanwatch.org/en/17307 (accessed on: December 10th, 2020).
[14] P. V. V. Le, T. P. Van, K. V. Mai, D. Q. Tran, Space-time Variability of Drought over Vietnam. International Journal of Climatology, Vol. 39, No. 14, 2019, pp. 1-15, https://doi.org/10.1002/joc.6164.
[15] H.T.L. Huynh, L. N. Thi, N. D. Hoang, Assessing the impact of climate change on agriculture in Quang Nam province, Vietnam using modeling approach, International Journal of Climate Change Strategies and Management Vol. 12, No. 5, pp. 757-771, 2020.
[16] D. S. Menashe, M. A. Friedl, User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product, 2018, pp. 1-18
[17] T. R. Loveland, B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, J. W. Merchant, Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sensing Vol. 21, No. 6 & 7, 2000, pp. 1303-1330.
[18] L. Sam, N. D. Vuong, Real Situation of Drought, Sandy Desert in Ninh Thuan Province, Cause and Solutions, 2008 (in Vietnamese).
[19] M. A. Naeth, A. W. Bailey, D. S. Chanasyk, D. J. Pluth, Water Holding Capacity of Litter and Soil Organic Matter in Mixed Prairie and Fescue Grassland Ecosystems of Alberta, Journal of Range Management, Vol. 44, No. 1, 1991, pp. 13-17.
[20] N. Qiao, D. Schaefer, E. Blagodatskaya, X. Zou, X. Xu, Y. Kuzyakov, Labile Carbon Retention Compensates for CO2 Released by Priming in Forest Soils, Global Change Biology, Vol. 20, No. 6, 2013, pp. 1943-1954, https://doi.org/10.1111/gcb.12458.
[21] T. Beck, R. G. Joergensen, E. Kandeler, F. Makeschin, E. Nusss, H. R. Oberholzer, S. Scheu, An Inter-Laboratory Comparison of Ten Different Ways of Measuring Soil Microbial Biomass Carbon, Soil Biology and Biochemistry, Vol. 29, No. 7, 1997, pp. 1023-1032, https://doi.org/10.1016/S0038-0717(97)00030-8.
[22] P. C. Brookes, A. Landman, G. Pruden, D. S. Jenkinson, Chloroform Fumigation and the Release of Soil Nitrogen: A Rapid Direct Extraction Method to Measure Microbial Biomass Nitrogen in Soil, Soil Biology and Biochemistry, Vol. 17, No. 6, 1985, pp. 837-842, https://doi.org/10.1016/0038-0717(85)90144-0.
[23] L. M. Zibilske, Carbon Mineralization, in: R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, A. Wollum (eds.). Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties (eds.), Soil Science Society of America, Wisconsin, USA, 1994, pp. 835-864.
[24] R. E. White, Understanding Vineyard Soils (2nd ed.). Oxford University Press Inc, New York, United States, 2015.
[25] N. K. Fageria, A. S. Nascente, Management of Soil Acidity of South American Soils for Sustainable Crop Production, Advances in Agronomy,
Vol. 128, No. 1, 2014, pp. 221-275, https://doi.org/10.1016/B978-0-12-802139-2.00006-8.
[26] J. P. Schimel, Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annual Review of Ecology, Evolution, and Systematics, Vol. 49, 2018, pp. 409-432, https://doi.org/10.1146/annurev-ecolsys-110617-062614.
[27] M. S. Carbone, C. J. Still, A. R. Ambrose, T. E. Dawson, A. P. Williams, C. M. Boot, S. M. Schaeffer, J. P. Schimel, Seasonal and Episodic Moisture Controls on Plant and Microbial Contributions to Soil Respiration, Oecologia, Vol. 167, 2011, pp. 265-278, https://doi.org/10.1007/s00442-011-1975-3.
[28] Z. Wu, P. Dijkstra, G. W. Koch, J. Peñuelas, B. A. Hungate, Responses of Terrestrial Ecosystems to Temperature and Precipitation Change: A Meta-analysis of Experimental Manipulation. Global Change Biology, Vol. 17, No. 2, 2011, pp. 927-942, https://doi.org/10.1111/j.1365-2486.2010.02302.x.
[29] M. D. Raviña, M. J. Acea, T. Carballas, Seasonal Changes in Microbial Biomass and Nutrient Flush in Forest Soils, Biology and Fertility of Soils, Vol. 19, 1995, pp. 220-226, https://doi.org/10.1007/BF00336163.
[30] J. Schimel, T. C. Balser, M. Wallenstein, Microbial Stress-response Physiology and its Implications for Ecosystem Function. Ecology, Vol. 88, 2007, pp. 1386-1394, https://doi.org/10.1890/06-0219.
[31] M. L. Kakumanu, L. Ma, M. A. Williams, Drought-induced Soil Microbial Amino Acid and Polysaccharide Change and Their Implications for C-N Cycles in A Climate Change World, Scientific Reports, Vol. 9, 2019, pp. 10968, https://doi.org/10.1038/s41598-019-46984-1.
[32] R. P. Voroney, R. J. Heck, The Soil Habitat. In: Paul, E. A. (ed.). Soil Microbiology, Ecology and Biochemistry (4th ed.), Academic, San Diego, 2015, pp. 15-39.
[33] J. K. Jansson, K. S. Hofmockel, Soil Microbiomes and Climate Change, Nature Reviews Microbiology, Vol. 18, No. 1, 2019, pp. 35-46, https://doi.org/10.1038/s41579-019-0265-7.
[34] D. S. Auyeung, V. Suseela, J. S. Dukes, Warming and Drought Reduce Temperature Sensitivity of Nitrogen Transformation,Global Change Biology, Vol. 19, No. 2, 2013, pp. 662-676, https://doi.org/10.1111/gcb.12063.
[35] L. Fuchslueger, M. Bahn, K. Fritz, R. Hasibeder, A. Richter, Experimental Drought Reduces the Transfer of Recently Fixed Plant Carbon to Soil Microbes and Alters the Bacterial Community Composition in A Mountain Meadow, New Phytologist, Vol. 201, No. 3, 2014, pp. 916-927, https://doi.org/10.1111/nph.12569.
[36] A. A. Hartmann, R. L. Barnard, S. Marhan, P. A. Niklaus, Effects of Drought and N-fetilization on N Cycling in Two Grassland Soils, Oecologia, Vol. 171, 2013, pp. 705-717, https://doi.org/10.1007/s00442-012-2578-3.
[37] P. M. Homyak, S. D. Allison, T. E. Huxman, M. L. Goulden, K. K. Treseder, Effects of Drought Manipulation on Soil Nitrogen Cycling: A Meta-analysis. JGR Biogeosciences, Vol. 22, No. 12, 2017, pp. 3260-3272, https://doi.org/10.1002/2017JG004146.
[38] L. Fuchslueger, B. Wild, M. Mooshammer, M. Takriti, S. Kienzl, A. Knoltsch, F. Hofhansl,
M. Bahn, A. Richter, Microbial Carbon and Nitrogen Cycling Responses to Drought and Temperature in Differently Managed Mountain Grasslands, Soil Biology and Biochemistry, Vol. 135, 2019, pp. 144-153, https://doi.org/10.1016/j.soilbio.2019.05.002.
[39] C. A. Campbell, V. O. Biederbeck, R. P. Zentner, G. P. Lafond, Effect of Crop Rotations and Cultural Practices on Soil Organicmatter, Microbial Biomass and Respiration in a Thin Black Chernozem. Canadian Journal of Soil Science, Vol. 71, No. 3, 1991, pp. 363-376, https://doi.org/10.4141/cjss91-035.