Tran Thi Thu Huong, Nguyen Xuan Tong, Le Ta Dang Khoi

Main Article Content


The purpose of this study was to evaluate the acute toxicity of pesticides including DDT, endosulfan, lindane and atrazine to Medaka Oryzias latipes fish embryos by identify the LC50 value and ratio of mortality after 24, 48, 72, and 96 hours of exposure. The fish O. latipes was obtained from the Biotechnology Center of Ho Chi Minh City, Vietnam, raised, and allowed sexual fertilization to conduct embryo collection. The one-day old fish embryos is harvested and exposed to different concentrations of DDT, endosulfan, lindane and atrazine respectively: 1,300; 1,500; 1,700; 1,900; 2,100 and 2,300 µg.L-1 DDT; 0.01; 0.1; 1 and 10 µg.L-1 endosulfan; 0; 80; 110; 130; 150; 170; 210; 250, and 300 µg.L-1 lindane and 150; 250; 350, and 450 µg.L-1 atrazine. The results showed that endosulfan had the highest toxicity in the four surveying groups, starting at concentration of <1 μg.L-1 (0.6 μg.L-1). The study also noted that four kinds of pesticides caused serious effects on fish embryo growth and survival. Their toxicity gradually decreased from endosulfan to lindane, atrazine and eventually DDT with LC50 values after 96 hours of exposure were 1123.8; 0.6; 116.2 and 165.2 μg.L-1, respectively. The differences between the LC50 values depended on several factors, such as the toxicant concentration, the exposure time... The mortality rates of Medaka embryo O. latipes linearly increased with the toxicant concentrations and the exposure duration. These pesticides inhibited growth leading to the fish embryo death. 


Keywords: Toxicity, Medaka fish, mortality ratio, plant protection chemicals, exposure.


[1] A. Mishra, J. Kumar, J. S. Melo, An Optical Microplate Biosensor for the Detection of Methyl Parathion Pesticide Using a Biohybrid of Sphingomonas sp. Cells-silica Nanoparticles, Biosensors and Bioelectronics, Vol. 87, 2017,
pp. 332-338.
[2] F. P. Carvalho, Pesticides, Environment, and Food Safety, Food and Energy Security, Vol. 6, 2017,
pp. 48-60.
[3] P. Montuori, S. Aurino, F. Garzonio, M. Triassi, Polychlorinated Biphenyls and Organochlorine Pesticides in Tiber River and Estuary: Occurrence, Distribution and Ecological Risk, Science of the Total Environment, Vol. 571, 2016,
pp. 1001-1016.
[4] L. Becker, M. Scheringer, U. Schenker,
K. Hungerbuhler, Assessment of the Environmental Persistence and Long-range Transport of Endosulfan, Environ Pollut, Vol. 159, 2011, pp. 1737-1743.
[5] F. Kafilzadeh, M. Ebrahimnezhad, Y. Tahery, Isolation and Identification of Endosulfan-Degrading Bacteria and Evaluation of Their Bioremediation in Kor River, Iran, Osong Public Health Res Perspect, Vol. 6, 2015, pp. 39-46.
[6] C. Zhang, H. X. Li, L. Qin, J. Ge, Z. Qi, M. Talukder, Y. H. Li, J. L. Li, Nuclear Receptor AHR-Mediated Xenobiotic Detoxification Pathway Involves in Atrazineinduced Nephrotoxicity in Quail (Coturnix C. coturnix), Environmental Pollution, Vol. 253, 2019,
pp. 889-898.
[7] C. Y. Zhu, W. L. Yang, H. J. He, C. P. Yang,
J. P. Yu, X. Wu, G. M. Zeng, S. Tarre, M. Green, Preparation, Performance and Mechanisms
of Magnetic Saccharomyces cerevisiae Bionanocomposites for Atrazine Removal, Chemosphere, Vol. 200, 2018, pp. 380-387.
[8] R. M. Maier, T. J. Gentry, Microorganisms and Organic Pollutants, Environmental Microbiology, Elsevier Inc Publishing House, United State,
Vol. 3, 2015, pp. 377-413.
[9] C. Ton, Y. Lin, C. Willett, Zebrafish as a Model for Developmental Neurotoxicity Testing, Birth Defects Res A: Clin Mol Teratol, Vol. 76, 2006, pp. 553-567.
[10] K. A. Stanley, L. R. Curtis, S. L. Massey Simonich, R. L. Tanguay, Endosulfan I and Endosulfan Sulfate Disrupts Zebrafish Embryonic Development, Aquatic Toxicology, Vol. 95, 2009, pp. 355-361.
[11] C. Stechert, M. Kolb, M. O. Rödel, M. Ahadir, Effects of Insecticide Formulations Used in Cotton Cultivation in West Africa on the Development of Flat-backed Toad Tadpoles (Amietophrynus maculatus), Environmental Science and Pollution Research, Vol. 22, 2014, pp. 2574-2583.
[12] J. Han, H. Chang, L. Loss, K. Zhang, F. Baehner, J. Gray, P. Spellman,B. Parvin, Comparison of Sparse Coding and Kernel Methods for Histopathological Classification of Glioblastoma Multiforme, Proc IEEE Int Symp Biomed Imaging, 2011, pp. 711-714.
[13] S. F. Pesce, J. Cazenave, M. V. Monferran,
S. Frede, D. A. Wunderlin, Integrated Survey on Toxic Effects of Lindane on Neotropical Fish: Corydoras paleatus and Jenynsia multidentata, Environ Pollut, Vol. 156, 2008, pp. 775-783.
[14] N. H. Minh, T. B. Minh, H. Iwata, N. Kajiwara,
T. Kunisue, S. Takahashi, P. H. Viet, B. C. Tuyen, S. Tanabe, Persistent Organic Pollutants in Sediments from Sai Gon-Dong Nai River basin, Vietnam: Levels and Temporal Trends, Arch Environ Contam Toxicol, Vol. 52, 2007, pp. 458-65.
[15] P. M. Hoai, N. T. Ngoc, N. H. Minh, P. H. Viet, Recent Levels of Organochlorine Pesticides and Polychlorinated Biphenyls in Sediments of the Sewer System in Hanoi, Vietnam, Environment Pollution, Vol. 158, 2010, pp. 913-920.
[16] K. Naruse, M. Tanaka, H. Takeda, A Model for Organogenesis Human Disease and Evolution, Springer Publisher House, Japan, 2011, pp. 633.
[17] M. Kasahara, K. Naruse, S. Sasaki, Y. Nakatani, W. Qu, B. Ahsan, The Medaka Draft Genome and Insights into Verterbrate Genome Evolution, Nature, Vol. 447, 2007, pp. 714-719.
[18] K. Howe, M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, M. Muffato, The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome, Nature, Vol. 496, 2013,
pp. 498-503.
[19] T. D. Long, V. T. Thu, T. T. Thuy, Zebrafish and Medaka Fish as Models for Research on Human Diseases, The Conference of Youth Science and Technology in Medicine and Pharmacy 2th, 2015 (in Vietnamese).
[20] G. N. Sreeya, R. Radha, C. N. Radhakrishnan, Studies on Acute Toxicity to Pesticide Stress in a Freshwater Fish Cirrhinus mrigala, International Journal of Fisheries and Aquatic Studies, Vol. 5, 2017, pp. 355-358.
[21] M. Knöbel, F. J. M. Busser, A. R. Rico,
N. I. Kramer, J. L. M. Hermens, C. Hafner, Predicting Adult Fish Acute Lethality with the Zebrafish Embryo: Relevance of Test Duration, Endpoints, Compound Properties, and Exposure Concentration Analysis, Environmental Science & Technology, Vol. 46, 2012, pp. 9690-9700.
[22] N. X. Tong, T. T. T. Huong, M. Huong, D. T. Thuy, N. H. T. Vy, The Impact of o, p`- DDT Pesticide Toxicity on the Growth of Medaka Fish Embryo Oryzias latipes, Vietnam Journal of Marine Science and Technology, Vol. 20, 2020, pp. 73-81.
[23] D. J. Finney, Probit Analysis, Cambridge University Press. Cambridge, UK, 1971, pp. 50-80.
[24] T. T. T. Huong, N. X. Tong, N. T. Binh, L. H. Anh, D. T. B. Hong, The Impact of o,p`- DDT Pesticide Toxicity on the Development of Fish Embryo Oryzias curvinotus, Journal of Biology, Vol. 41, 2019, pp. 337-344.
[25] C. S. Qu, W. Chen, J. Bi, L. Huang, F. Y. Li, Ecological Risk Assessment of Pesticide Residues in Taihu Lake Wetland, China, Ecological Modelling, 2011, pp. 287-292.
[26] W. W. Johnson, M. T. Finley: Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates. Department of the Interior Fish and WildLife Service/Resource Publication 137, Washington DC, United states, 1980.
[27] A. J. Kuhl, S. Manning, M. Brouwer, Brain Aromatase in Japanese Medaka (Oryzias latipes): Molecular Characterization and Role in Xenoestrogen-induced Sex Reversal, The Journal of Steroid, Biochemistry and Molecular Biology, Vol. 96, 2005, pp. 67-77.
[28] L. Wua, H. Rua, Z. Nia, X. Zhang, H. Xiea,
F. Yaoa, Comparative Thyroid Disruption by o,p’-DDT and p,p’-DDE in Zebrafish Embryos/Larvae, Aquatic Toxicology, Vol. 216, 2019, pp. 105280.
[29] Y. S. Moon, H. J. Jeon, T. H. Nam, S. D. Choi,
B. J. Park, Y. S. Ok, S. E. Lee, Acute Toxicity and Gene Responses Induced by Endosulfan in Zebrafish (Danio rerio) Embryos, Chemical Speciation & Bioavailability, Vol. 28, 2016,
pp. 103-109.
[30] W. S. Chow, W. K. L. Chan, K. M. Chan, Toxicity Assessment and Vitellogenin Expression in Zebrafish (Danio rerio) Embryos and Larvae Acutely Exposed to Bisphenol A, Endosulfan, Heptachlor, Methoxychlor and Tetrabromobisphenol A, Journal of Applied Toxicology, Vol. 33, 2012, pp. 670-678.
[31] Y. M. Velasco-Santamaría, R. D. Handy,
K. A. Sloman, Endosulfan Affects Health Variables in Adult Zebrafish (Danio rerio) and Induces Alterations in Larvae Development, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Vol. 153, 2011,
pp. 372-380.
[32] C. Teta, Y. S. Naik, Endosulfan Reduces Fertilization Success and Causes Abnormal Embryo Development to Zebrafish, Toxicological & Environmental Chemistry, 2018, pp. 1-21.
[33] C. Aronzon, G. Svartz, C. P. Coll, Comparative Toxicity of Endosulfan and Diazinon on the Embryo-larval Development of the South American Toad, Rhinella arenarum, International Journal of Environment and Health, Vol. 8, 2017, pp. 225-234.
[34] D. W. Sparling, G. M. Fellers, Toxicity of Two Insecticides to California, USA, Anurans and Its Relevance to Declining Amphibian Populations, Environmental Toxicology and Chemistry,
Vol. 28, 2009, pp. 1696.
[35] Y.G. Piazza, M. Pandolfi,F. L. Lo Nostro, Effect of the Organochlorine Pesticide Endosulfan on GnRH and Gonadotrope Cell Populations in Fish Larvae, Archives of Environmental Contamination and Toxicology, No. 61, 2010, pp. 300-310.
[36] M. F. Khan, S. Tabassum, H. Sadique, M. Sajid,
S. Ghayyur, K. Dil, Hematological, Biochemical and Histopathological Alterations in Common Carp during Acute Toxicity of Endosulfan, International Journal of Agriculture and Biology, Vol. 22, 2019, pp. 703-709.
[37] M. Oliva, M. L. González de Canales, M. C. Garrido, S. Sales, Lindane Toxicity Range-finding Test in Senegal Sole (Solea senegalensis) Juvenile: Note on Histopathological Alterations, Toxicological & Environmental Chemistry,
Vol. 92, 2010, pp. 915-926.
[38] E. Lammer, G. J. Carr, K. Wendler, J. M. Rawlings, S. E. Belanger, T. Braunbeck, Is the Fish Embryo Toxicity Test (FET) with the Zebrafish (Danio rerio) a Potential Alternative for the Fish Acute Toxicity Test? Comp. Biochem. Physiol. C Toxicol. Pharmacol, Vol. 149, 2009, pp. 196-209.
[39] IARC, DDT, Lindane, and 2,4-D, Organization, WHO Press, France, 2018.
[40] D. A. Goolsby, L. L. Boyer, G. E. Mallard, Persistence of Herbicides in Selected Reservoirs in the Midwestern United States: Some Preliminary Results, U. S. G. Survey Press, 1993, pp. 93-418.
[41] T. D. Anderson, M. J. Lydy, Increased Toxicity to Invertebrates Associated with a Mixture of Atrazine and Organophosphate Insecticides, Environmental Toxicology and Chemistry,
Vol. 21, 2002, pp. 1507-1514.
[42] R. A. Moreira, A. D. S. Mansano, L. C. D. Silva, O. Rocha, A Comparative Study of the Acute Toxicity of the Herbicide Atrazine to Cladocerans Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera, Acta Limnologica Brasiliensia, Vol. 26, 2014, pp. 1-8.
[43] A. Moore, N. Lower, I. Mayer, L. Greenwood, The Impact of a Pesticide on Migratory Activity and Olfactory Function in Atlantic Salmon (Salmo salar L.) Smolts, Aquaculture, Vol. 273, 2007,
pp. 350-359.
[44] K. Shenoy, Environmentally Realistic Exposure to the Herbicide Atrazine Alters Some Sexually Selected Traits in Male Guppies, PLoS One,
Vol. 7, 2012, pp. e30611.
[45] J. A. Cleary, D. E. Tillitt, F. S. vom Saal, D. K. Nicks, R. A. Claunch, R. K. Bhandari, Atrazine Induced Transgenerational Reproductive Effects in Medaka (Oryzias latipes), Environmental Pollution, Vol. 251, 2019, pp. 639-650.
[46] Z. Liu, Z. Fu, Y. Jin, Immunotoxic Effects of Atrazine and Its Main Metabolites at Environmental Relevant Concentrations on Larval Zebrafish (Danio rerio), Chemosphere, Vol. 166, 2017, pp. 212-220.
[47] K. R. Solomon, J. A. Carr, L. H. Du Preez,
J. P. Giesy, R. J. Kendall, E. E. Smith, G. J. V. D. Kraak, Effects of Atrazine on Fish, Amphibians, and Aquatic Reptiles: A Critical Review, Critical Reviews in Toxicology, Vol. 38, 2008,
pp. 721-772.
[48] T. Narahashi, Neurophysiological Effects of Insecticides, Handbook of Pesticide Toxicology, 2010, pp. 799-816.
[49] T. H. T. Dang, L. T. Nguyen, D. T. Nguyen, Toxicological and Melanin Synthesis Effects of Polygonum multiflorum Root Extracts on Zebrafish Embryos and Human Melanocytes, Biomedical Research and Therapy, Vol. 3, 2016, pp. 808-818.
[50] R. H. Peters, The Ecological Implications of Body Size, Cambridge University Press, The United Kingdom, 1986.