Le Van Thien

Main Article Content

Abstract

The East ​​Vietnam Sea plays important roles in the Pacific Northwest region. The projection of changes in sea surface temperature (SST) in these regions is an important research topic in marine science. However, this is a very difficult problem due to the lack of available long-term projection data. Recently, with the development of numerical modeling technology, it has become an important way to help us understand climate change. This paper focuses on studying the SST changes in the East Vietnam Sea during the history of the 20th century and the change under 3 emission scenarios in the 21st century based on a combination of 20 global models (GCM) from Phase 5 of the the Climate Model Intercomparison Project (CMIP5) and together with the observed data set. Compared with the observed data, most of the global GCMs models can simulate well the spatial and seasonal changes of the SST over the East Vietnam Sea regions. The spatial and annual SST trends over the the 20th century based on both observations and multimodel ensemble averages show that the warming trend of SST over most of the East Vietnam Sea with the largest warming trend occurred in the center and southern regions of the East Vietnam Sea. However, compared with the observation, CMIP5 underestimated SST trends over most regions of East Vietnam Sea. In addition, there is a consistency between the CMIP5 and the spatial and seasonal observations of the SST trend in the East Vietnam Sea areas. The future SST projections for East Vietnam Sea indicate that RCP 4.5 and RCP 8.5 exhibit a gradual increase in annual SST during the 21st century at a rate of 0.1 °C and 0.3 °C per 10 years respectively. The lowest emission mitigation scenario, RCP 2.6, produces the lowest rate of warming. By the end of the 21st century, the annual SST is projected to increase by 0.5-2.0 °C in 3 emission scenarios of typical representative concentration pathways (RCP) 8.5, 4.5 and 2.6.


 

Keywords: Sea Surface Temperature, East Vietnam Sea, CMIP5

References

[1] T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor,
S. K. Allen, J. Boschung, A. Nauels, Y. Xia,
V. Bex, P. M. Midgley, IPCC, 2013: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013, pp. 1535, https://www.ipcc.ch/report/ar5/wg1 (accessed on: June 2rd, 2021).
[2] Climate at a Glance, Global Ocean, Https://www.ncdc.noaa.gov/cag/time-series/global/globe/ocean/ytd/12/1880-2017, 2017 (accessed on: June 2rd, 2021).
[3] S. Levitus, J. I. Antonov, T. P. Boyer, O. K. Baranova, H. E. Garcia, and Co-Authors, World Ocean Heat Content and Thermosteric Sea Level Change (0–2000 m), 1955-2010, Geophys. Res. Lett, 2012, pp. 1955-2010, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012GL051106 (accessed on: June 2rd, 2021).
[4] T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen et al., The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Climate Change, 2013: Cambridge, United Kingdom and New York,
NY, USA.
[5] S. Solomon, D. Qin, M. Manning, Z. Chen,
M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Climate Change, 2007: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[6] Food and Agriculture Organization of the United Nations: The State of World Fisheries and Aquaculture 2012, Rome, FAO, 2012, pp. 209, https://www.fao.org/publications/card/es/c/81ea54da-0f65-56c6-91d2-8257b8ac4136/ (accessed on: June 2rd, 2021).
[7] T. F. Stocker,D. Qin, G. K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels,
Y. Xia, V. Bex, P. M. Midgley, The Physical Science Basis, The Agu Fall Meeting, 2014,
pp. 1022-1025, https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Frontmatter_FINAL.pdf (accessed on: June 2rd, 2021)
[8] G. A. Meehl,, C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. Mcavaney, J. F. Mitchell,The Wcrp Cmip3 Multimodel Dataset: A New Era In Climate Change Research, Bull. Am. Meteorol. Soc., Vol. 88, 2007, pp. 1383-1394, https://doi.org/10.1175/BAMS-88-9-1383
[9] K. E. Taylor, J. S. Ronald, G. A. Meehl, An Overview of Cmip5 and The Experiment Design, Bull. Am. Meteorol. Soc., Vol. 93, 2012,
pp. 485-498,
https://doi.org/10.1175/BAMS-D-11-00094.1.
[10] I. Fathrio, S. Iizuka, A. Manda, Y. M. Kodama,
S. Ishida, Q. Moteki, H. Yamada,, Y. Tachibana, Assessment of Western Indian Ocean SST Bias of CMIP5 Models, J. Geophys. Res. Oceans,
Vol. 122, 2017 pp. 3123-2140, https://doi.org/10.1016/j.ocemod.2019.101503.
[11] G. Konda, N. K. Vissa, Assessment of Ocean-Atmosphere Interactions for the Boreal Summer Intraseasonal Oscillations in CMIP5 Models over the Indian Monsoon Region, Asia-Pacific Journal of Atmospheric Sciences, Vol. 57, No. 4, 2021,
pp. 717-739, https://doi.org/10.1007/s13143-021-00228-3.
[12] R. C. Levine, A. G. Turner, D. Marathayil,
G. M. Martin, The Role of Northern Arabian Sea Surface Temperature Biases in CMIP5 Model Simulations and Future Projections of Indian Summer Monsoon Rainfall, Clm. Dyn., Vol. 41, 2013, pp. 155-172, https://link.springer.com/article/10.1007/s00382-017-3953-x (accessed on: June 2rd, 2021).
[13] K. Riahi et al., Rcp 8.5-a Scenario of Comparatively High Greenhouse Gas Emissions, Climatic Change, 109, 2011, pp. 33-57, https://link.springer.com/article/10.1007/s10584-011-0149-y.
[14] A. Thomson et al., Rcp4.5: a Pathway for Stabilization of Radiative Forcing by 2100, Climatic Change, 109, 2011, pp. 77-94, http://dx.doi.org/10.1007/s10584-011-0151-4 .
[15] D. P. Van vuuren, and et al., The Representative Concentration Pathways: an Overview, Climatic change, Vol. 109, 2011, pp. 5-31, http://dx.doi.org/10.1007/s10584-011-0148-z.
[16] N. A. Rayner, D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, A. Kaplan, Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature Since the Late Nineteenth Century,
J. Geophys. Res., Vol. 108, 2003, pp. 4407, http://dx.doi.org/10.1029/2002JD002670.
[17] K. R. Sperber, H. Annamalai, I. S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, T. Zhou, The Asian Summer Monsoon: An Intercomparison of CMIP5 vs. CMIP3 Simulations of the Late 20th Century, Clim. Dyn, Vol. 41, No. 9-10, 2013, pp. 2711-2744, https://doi.org/10.1007/s00382-012-1607-6.
[18] R. Alkama, L. Marchand, A. Ribes, B. Decharme, Detection of Global Runoff Changes: Results from Observations and Cmip5 Experiments, Hydrol. Earth Syst. Sci., Vol. 17, No. 7, 2013, pp. 2967-2979, http://dx.doi.org/10.5194/hessd-10-2117-2013.
[19] P. C. Hsu, T. Li, H. Murakami, A. Kitoh, Future Change of The Global Monsoon Revealed from 19 Cmip5 Models, J. Geophys. Res. Atmos., Vol. 118, 2013, pp. 1247-1260, https://doi.org/10.1002/jgrd.50145.
[20] D. Q. Huang, J. Zhu, Y. C. Zhang, A. N. Huang, Uncertainties on the Simulated Summer Precipitation Over Eastern China From The Cmip5 Models, J. Geophys. Res. Atmos., Vol. 118, 2013, pp. 9035-9047, https://doi.org/10.1002/jgrd.50695.
[21] X. Qu, G. Huang, W. Zhou, Consistent Responses of East Asian Summer Mean Rainfall to Global Warming in Cmip5 Simulations, Theor. Appl. Climatol., 2013, pp. 1-9, https://doi.org/10.1007/s00704-013-0995-9.
[22] L. Wang, W. Chen, A Cmip5 Multimodel Projection of Future Temperature, Precipitation, and Climatological Drought in China, Int. J. Climatol., 2013, http://dx.doi.org/10.1002/joc.3822
[23] Y. Tachibana, S. Iizuka, Y. M. Kodama,
Q. Moteki, A. Manda, H. Yamada, S. Ishida,
I. Fathrio, Assessment of Western Indian Ocean SSTst Bias of Cmip5 Models, J. Geophys. Res. Ocean, Jgr122, 2017, pp. 3123-3140, https://doi.org/10.1002/2016JC012443.
[24] R. C. Levine, A. G. Turner, D. Marathayil, G. M. Martin, The Role of Northern Arabian Sea Surface Temperature Biases in Cmip5 Model Simulations and Future Projections of Indian Summer Monsoon Rainfall, Clm. Dyn., Vol. 41, 2013, pp. 155-172, https://ui.adsabs.harvard.edu/link_gateway/2013ClDy...41..155L/doi.org/10.1007/s00382-012-1656-x.
[25] G. Li, S.P. Xie, Y. Du, Monsoon-Induced Biases of Climate Models Over the Tropical Indian Ocean,
J. Clim., Vol. 28, 2015, pp. 3058-3072, http://dx.doi.org/10.1175/JCLI-D-14-00740.1.