Ngo Duc Thanh

Main Article Content

Abstract

Abstract: This paper presents a comprehensive review of  the development of climate change scenarios (CC) in Southeast Asia and Vietnam over the past decades. In Southeast Asia, the dynamical downscaling approach using regional climate models has been mainly applied, especially by the Coordinated Regional Climate Downscaling Experiment - Southeast Asia (CORDEX-SEA) community. In Vietnam, climate change scenarios were published and updated in 2009, 2012, 2016, and, most recently, in 2020 by the Ministry of Natural Resources and Environment. While recent CC scenarios in Vietnam have favored the dynamical approach, some studies have already applied the statistical method and performed the downscaling for multiple models and greenhouse gas (GHG) scenarios. So far, experiments in the region and Vietnam have only focused on downscaling results from global climate models participating in the Coupled Model Intercomparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5). Published results show a consensus on the increase in projected temperature; however, the results of precipitation projections remain highly uncertain. This paper subsequently proposes several research directions that could be implemented in the coming years in the region, including: i) Building a high-resolution grid-based climate dataset; ii) Downscaling CMIP6 products with the latest GHG scenarios using dynamical, statistical, and probabilistic projections, with a focus on the role of urbanization in the context of global climate change; and iii) Developing a regional coupled atmosphere-ocean system to better understand the mechanism of future climate change in the region and Vietnam.


Keywords: Climate change, downscaling, future scenarios, Southeast Asia, Vietnam.


 


 

References

[1] H. E. Beck, N. E. Zimmermann, T. R. McVicar,
N. Vergopolan, A. Berg, E. F. Wood, Present and Future Köppen-Geiger Climate Classification Maps at 1 km Resolution, Sci Data, Vol. 5, No. 1, 2018, pp. 180214, https://doi.org/10.1038/sdata.2018.214.
[2] Y. Hijioka et al., Asia, Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014, pp. 1327-1370.
[3] W. K. Cheong et al., Observed and Modelled Temperature and Precipitation Extremes Over Southeast Asia from 1972 to 2010, International Journal of Climatology, Vol. 38, No. 7, 2018,
pp. 3013-3027, https://doi.org/10.1002/joc.5479.
[4] M. Q. Villafuerte, J. Matsumoto, Significant Influences of Global Mean Temperature and ENSO on Extreme Rainfall in Southeast Asia, J Clim,
Vol. 28, No. 5, 2015, pp. 1905-1919, https://doi.org/10.1175/JCLI-D-14-00531.1.
[5] M. L. Tan, L. Juneng, F. T. Tangang, J. X. Chung, R. B. Radin Firdaus, Changes in Temperature Extremes and Their Relationship with ENSO
in Malaysia from 1985 to 2018, International Journal of Climatology, Vol. 41, No. S1, 2021,
pp. E2564-E2580, https://doi.org/10.1002/joc.6864.
[6] Supari, F. Tangang, L. Juneng, E. Aldrian, Observed Changes in Extreme Temperature and Precipitation Over Indonesia, International Journal of Climatology, Vol. 37, No. 4, 2017, pp. 1979-1997, https://doi.org/10.1002/joc.4829.
[7] N. D. Thanh, P. V. Tan, Non-parametric Test for Trend Detection of Some Meteorological Elements for the Period 1961-2007, VNU Journal of Science: Natural Sciences and Technology, Vol. 28, No. 3S, 2012, pp. 129-135 (in Vietnamese).
[8] S. Limjikaran, A. Limsakul, Observed Trends in Surface Air Temperatures and Their Extremes in Thailand from 1970 to 2009, Journal of the Meteorological Society of Japan, Series II, Vol. 90, No. 5, 2012, pp. 647-662, https://doi.org/10.2151/jmsj.2012-505.
[9] J. M. Gutiérrez et al., Atlas, in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [V. M. Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy,
J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.)], Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021, pp. 1927-2058, https://doi.org/10.1017/9781009157896.021.
[10] H. P. Thanh, N. D. Thanh, J. Matsumoto, P. V. Tan, H. V. Van, Rainfall Trends in Vietnam and Their Associations with Tropical Cyclones During 1979-2019, SOLA, Vol. 16, 2020, pp. 169-174, https://doi.org/10.2151/sola.2020-029.
[11] A. Limsakul, P. Singhruck, Long-term Trends and Variability of Total And Extreme Precipitation in Thailand, Atmos Res, Vol. 169, 2016, pp. 301-317, https://doi.org/10.1016/J.ATMOSRES.2015.10.015.
[12] IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [V. M. Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.)], Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021, https://doi.org/10.1017/9781009157896.
[13] K. E. Taylor, R. J. Stouffer, G. A. Meehl, An Overview of CMIP5 and the Experiment Design, Bull Am Meteorol Soc, Vol. 93, No. 4, 2011,
pp. 485-498, https://doi.org/10.1175/BAMS-D-11-00094.1.
[14] V. Eyring et al., Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization, Geosci Model Dev, Vol. 9, No. 5, 2016, pp. 1937-1958, https://doi.org/10.5194/gmd-9-1937-2016.
[15] F. Giorgi, Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going Next?, Journal of Geophysical Research: Atmospheres, Vol. 124, No. 11, 2019, pp. 5696-5723, https://doi.org/10.1029/2018JD030094.
[16] MONRE, Climate Change and Sea Level Rise Scenarios for Vietnam, 2009, pp. 1-34
(in Vietnamese).
[17] MONRE, Climate Change and Sea Level Rise Scenarios for Vietnam, Vietnam Natural Resources, Environment and Mapping Publishing House, 2012, pp. 1-112 (in Vietnamese).
[18] MONRE, Climate Change and Sea Level Rise Scenarios for Vietnam, Vietnam Natural Resources, Environment and Mapping Publishing House, 2016, pp. 1-188 (in Vietnamese).
[19] MONRE, Climate Change Scenarios, Vietnam Natural Resources, Environment and Mapping Publishing House, 2020, 286 pp (in Vietnamese).
[20] J. Murphy, An Evaluation of Statistical and Dynamical Techniques for Downscaling Local Climate, J Clim, Vol. 12, No. 8, 1999,
pp. 2256-2284, https://doi.org/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2.
[21] F. Giorgi, L. O. Mearns, Introduction to Special Section: Regional Climate Modeling Revisited, Journal of Geophysical Research: Atmospheres, Vol. 104, No. D6, 1999, pp. 6335-6352, https://doi.org/10.1029/98JD02072.
[22] M. Octaviani, K. Manomaiphiboon, Performance of Regional Climate Model RegCM3 Over Thailand, Clim Res, Vol. 47, No. 3, 2011, pp. 171-186, https://doi.org/10.3354/cr00990.
[23] K. Manomaiphiboon, M. Octaviani, K. Torsri,
S. Towprayoon, Projected Changes in Means and Extremes of Temperature and Precipitation Over Thailand Under Three Future Emissions Scenarios, Clim Res, Vol. 58, No. 2, 2013, pp. 97-115, https://doi.org/10.3354/cr01188.
[24] J. L. McGregor, K. C. Nguyen, D. G. C. Kirono,
J. J. Katzfey, High-resolution Climate Projections for the Islands of Lombok and Sumbawa, Nusa Tenggara Barat Province, Indonesia: Challenges and implications, Clim Risk Manag, Vol. 12, 2016, pp. 32-44, https://doi.org/10.1016/j.crm.2015.10.001.
[25] M. Q. Villafuerte et al., Projected Changes in Rainfall and Temperature Over the Philippines from Multiple Dynamical Downscaling Models, International Journal of Climatology, Vol. 40, 2020, pp. 1784-1804, https://doi.org/10.1002/joc.6301.
[26] V. T. Phan, T. N. Duc, T. M. H. Ho, Seasonal and Interannual Variations of Surface Climate Elements Over Vietnam, Clim Res, Vol. 40, No. 1, 2009, pp. 49-60, https://doi.org/10.3354/cr00824.
[27] J. Katzfey et al., High-resolution Simulations for Vietnam - Methodology and Evaluation of Current Climate, Asia Pac J Atmos Sci, Vol. 52, No. 2, 2016, pp. 91-106, https://doi.org/10.1007/s13143-016-0011-2.
[28] N. D. Thanh, C. Kieu, M. Thatcher, D. N. Le,
P. V. Tan, Climate Projections for Vietnam Based on Regional Climate Models, Clim Res, Vol. 60, No. 3, 2014, pp. 199-213, https://doi.org/10.3354/cr01234.
[29] M. V. Khiem, G. Redmond, C. McSweeney,
T. Thuc, Evaluation of Dynamically Downscaled Ensemble Climate Simulations for Vietnam, International Journal of Climatology, Vol. 34,
No. 7, 2014, pp. 2450-2463, https://doi.org/10.1002/joc.3851.
[30] S. Kang, E. S. Im, E. A. B. Eltahir, Future Climate Change Enhances Rainfall Seasonality in A Regional Model of Western Maritime Continent, Clim Dyn, Vol. 52, No. 1, 2019, pp. 747-764, https://doi.org/10.1007/s00382-018-4164-9.
[31] R. Rahmat et al., A Regional Climate Modelling Experiment for Southeast Asia, SEACAM (Southeast Asia Climate Analysis and Modelling) Project’s Final Report, Centre for Climate Research in Singapore & Hadley Centre, 2014,
pp. 1-128.
[32] N. Nakicenovic et al., Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, 2000, pp. 1-608.
[33] F. Tangang et al., Projected Future Changes in Rainfall in Southeast Asia Based on CORDEX–SEA Multi-Model Simulations, Clim Dyn, Vol. 55, No. 5-6, 2020, pp. 1247-1267, https://doi.org/10.1007/S00382-020-05322-2.
[34] L. Juneng et al., Sensitivity of Southeast Asia Rainfall Simulations to Cumulus and Air-Sea Flux Parameterizations in Regcm4, Clim Res, Vol. 69, No. 1, 2016, pp. 59-77, https://doi.org/10.3354/Cr01386.
[35] F. T. Cruz et al., Sensitivity of Temperature to Physical Parameterization Schemes of RegCM4 Over the CORDEX-Southeast Asia Region, International Journal of Climatology, Vol. 37,
No. 15, 2017, pp. 5139-5153, https://doi.org/10.1002/joc.5151.
[36] T. N. Duc et al., Performance Evaluation of Regcm4 in Simulating Extreme Rainfall and Temperature Indices Over The CORDEX-Southeast Asia Region, International Journal of Climatology, Vol. 37, No. 3, 2017, pp. 1634-1647, https://doi.org/10.1002/Joc.4803.
[37] K. A. Emanuel, M. Ž. Rothman, Development and Evaluation of A Convection Scheme for Use in Climate Models, J Atmos Sci, Vol. 56, No. 11, 1999, pp. 1766-1782, https://doi.org/10.1175/1520-0469(1999)056<1766: DAEOAC>2.0.CO;2.
[38] R. E. Dickinson, A. H. Sellers, P. J. Kennedy, Biosphere-Atmosphere Transfer Scheme (BATS) Version 1E as Coupled to the NCAR Community Climate Model, Natl Cent for Atmos Res, Boulder, Colorado, 1993, pp. 1-72.
[39] M. Herrmann, N. D. Thanh, L. T. Tuan, Impact of Climate Change on Sea Surface Wind in Southeast Asia, from Climatological Average to Extreme Events: Results from A Dynamical Downscaling, Clim Dyn, Vol. 54, No. 3-4, 2020, pp. 2101-2134, https://doi.org/10.1007/S00382-019-05103-6.
[40] L. T. Tuan et al., Application of Quantile Mapping Bias Correction for Mid-future Precipitation Projections Over Vietnam, SOLA, Vol. 15, 2019, pp. 1-6, https://doi.org/10.2151/Sola.2019-001.
[41] S. T. Ngai et al., Projected Mean and Extreme Precipitation Based on Bias-Corrected Simulation Outputs of CORDEX Southeast Asia, Weather Clim Extrem, Vol. 37, 2022, pp. 100484, https://doi.org/10.1016/J.Wace.2022.100484.
[42] F. Tangang et al., Future Changes in Annual Precipitation Extremes Over Southeast Asia Under Global Warming of 2 °C, APN Science Bulletin, Vol. 8, No. 1, 2018, pp. 3-8, https://doi.org/10.30852/Sb.2018.436.
[43] S. Supari et al., Multi-Model Projections of Precipitation Extremes in Southeast Asia Based on CORDEX-Southeast Asia Simulations, Environ Res, Vol. 184, 2020, pp. 109350, https://doi.org/10.1016/J.Envres.2020.109350.
[44] M. Herrmann, T. N. Duy, T. N. Duc, F. Tangang, Climate Change Impact on Sea Surface Winds in Southeast Asia, International Journal of Climatology, Vol. 42, No. 7, 2022, pp. 3571-3595, https://doi.org/10.1002/joc.7433.
[45] P. A. Arias et al., Technical Summary, in Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [V. M. Delmotte, P. Zhai,
A. Pirani, S. L. Connors, C. Péan, S. Berger,
N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis,
M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.)], Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021, pp. 33-144. https://doi.org/10.1017/9781009157896.002.
[46] P. L. Nguyen, M. Bador, L. V. Alexander,
T. P. Lane, T. N. Duc, More Intense Daily Precipitation in CORDEX-SEA Regional Climate Models Than Their Forcing Global Climate Models Over Southeast Asia, International Journal of Climatology, Vol. 42, No. 12, 2022, pp. 6537-6561, https://doi.org/10.1002/joc.7619.
[47] N. D. Ngu, N. T. Hieu, Climate and Climate Resources of Vietnam, Agriculture Publishing House, 2004, pp. 1-230 (in Vietnamese).
[48] IPCC, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I, Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.
[49] D. V. Vuuren et al., The Representative Concentration Pathways: An Overview, Clim Change, Vol. 109, No. 1-2, 2011, pp. 5-31, https://doi.org/10.1007/s10584-011-0148-z.
[50] T. M. H. Ho, V. T. Phan, N. Q. Le, S. Nguyen, Extreme Climatic Events Over Vietnam from -Observational Data and RegCM3 Projections, Clim Res, Vol. 49, 2011, pp. 87-100.
[51] E. Espagne et al., Climate Change in Vietnam; Impacts and Adaptation. A COP26 Assessment Report of the GEMMES Vietnam Project, 2021, [Online]. Available: https://www.afd.fr/en/ressources/gemmes-vietnam-climate-change-impacts-and-adaptation (accessed on: December 1st, 2022).
[52] A. W. Wood, L. R. Leung, V. Sridhar, D. P. Lettenmaier, Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs, Clim Change, Vol. 62, No. 1, 2004, pp. 189-216, https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.
[53] Q. T. Anh, T. N. Duc, E. Espagne, L. T. Tuan, A High-resolution Projected Climate Dataset for Vietnam: Construction and Preliminary Application in Assessing Future Change, Journal of Water and Climate Change, Vol. 13, No. 9, 2022, pp. 3379-3399, https://doi.org/10.2166/wcc.2022.144.
[54] T. N. Duc, J. Matsumoto, H. Kamimera, H. H. Bui, Monthly Adjustment of Global Satellite Mapping of Precipitation (GSMaP) data over the Vu Gia-Thu Bon River Basin in Central Vietnam using an Artificial Neural Network, Hydrological Research Letters, Vol. 7, No. 4, 2013, pp. 85-90, https://doi.org/10.3178/hrl.7.85.
[55] T. N. Xuan et al., The Vietnam Gridded Precipitation (VnGP) Dataset: Construction and Validation, SOLA, Vol. 12, 2016, pp. 291-296, https://doi.org/10.2151/sola.2016-057.
[56] I. Harris, T. J. Osborn, P. Jones, D. Lister, Version 4 of the CRU TS Monthly High-resolution Gridded Multivariate Climate Dataset, Sci Data, Vol. 7,
No. 1, 2020, pp. 109, https://doi.org/10.1038/s41597-020-0453-3.
[57] R. F. Adler et al., The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation, Atmosphere (Basel), Vol. 9, No. 4, 2018, pp. 9040138, https://doi.org/10.3390/atmos9040138.
[58] A. Yatagai, K. Kamiguchi, O. Arakawa,
A. Hamada, N. Yasutomi, A. Kitoh, APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges, Bull Am Meteorol Soc, Vol. 93, No. 9, 2012, pp. 1401-1415, https://doi.org/10.1175/BAMS-D-11-00122.1.
[59] C. J. Willmott, C. M. Rowe, W. D. Philpot, Small-Scale Climate Maps: A Sensitivity Analysis of Some Common Assumptions Associated with Grid-Point Interpolation and Contouring, The American Cartographer, Vol. 12, No. 1, 1985,
pp. 5-16, https://doi.org/10.1559/152304085783914686.
[60] B. C. O’Neill et al., The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci Model Dev, Vol. 9, No. 9, 2016, pp. 3461-3482,
https://doi.org/10.5194/gmd-9-3461-2016.
[61] Q. Desmet, T. N. Duc, A Novel Method for Ranking CMIP6 Global Climate Models Over the Southeast Asian Region, International Journal of Climatology, Vol. 42, No. 1, 2022, pp. 97-117, https://doi.org/10.1002/joc.7234.
[62] Q. T. Anh, T. N. Duc, E. Espagne, Statistical Downscaling and Probabilistic Projections for Climate Risk Analysis in Vietnam, in National Climate Change Impacts and Adaptation, Final Report [E. Espagne, G. Magacho (eds.)], Hanoi, World Publishing House, 2022, pp. 13-62.
[63] H. Hersbach et al., The ERA5 Global Reanalysis, Quarterly Journal of the Royal Meteorological Society, Vol. 146, No. 730, 2020, pp. 1999-2049, https://doi.org/10.1002/qj.3803.
[64] IPCC, Evaluation of Climate Models, in Climate Change 2013 - The Physical Science Basis, Cambridge University Press, 2014, pp. 741-866, https://doi.org/10.1017/CBO9781107415324.020.
[65] D. J. Rasmussen, M. Meinshausen, R. E. Kopp, Probability-Weighted Ensembles of U. S. County-Level Climate Projections for Climate Risk Analysis, J Appl Meteorol Climatol, Vol. 55,
No. 10, 2016, pp. 2301-2322, https://doi.org/10.1175/JAMC-D-15-0302.1.
[66] J. Gao, B. C. O’Neill, Mapping Global Urban Land for the 21st Century with Data-Driven Simulations and Shared Socioeconomic Pathways, Nat Commun, Vol. 11, No. 1, 2020, pp. 2302, https://doi.org/10.1038/s41467-020-15788-7.
[67] E. S. Im, N. X. Thanh, Y. H. Kim, J. B. Ahn, 2018 Summer Extreme Temperatures in South Korea and their Intensification under 3 °C Global Warming, Environmental Research Letters,
Vol. 14, No. 9, 2019, pp. 094020, https://doi.org/10.1088/1748-9326/ab3b8f.
[68] J. Wang, J. Feng, Z. Yan, Potential Sensitivity of Warm Season Precipitation to Urbanization Extents: Modeling Study in Beijing-Tianjin-Hebei Urban Agglomeration in China, Journal of Geophysical Research: Atmospheres, Vol. 120, No. 18, 2015, pp. 9408-9425, https://doi.org/.1002/2015JD023572.
[69] Z. W. Yan, J. Wang, J. J. Xia, J. M. Feng, Review of Recent Studies of the Climatic Effects of Urbanization in China, Advances in Climate Change Research, Vol. 7, No. 3, 2016, pp. 154-168, https://doi.org/10.1016/j.accre.2016.09.003.
[70] R. Hamdi et al., The State-of-the-Art of Urban Climate Change Modeling and Observations, Earth Systems and Environment, Vol. 4, No. 4, 2020,
pp. 631-646, https://doi.org/10.1007/s41748-020-00193-3.
[71] V. Q. Doan, H. Kusaka, Projections of Urban Climate in the 2050s In A Fast-Growing City in Southeast Asia: The Greater Ho Chi Minh City Metropolitan Area, Vietnam, International Journal of Climatology, Vol. 38, No. 11, 2018,
pp. 4155-4171, https://doi.org/10.1002/joc.5559.
[72] A. Timmermann et al., El Niño–southern Oscillation Complexity, Nature, Vol. 559, No. 7715, 2018,
pp. 535-545,
https://doi.org/10.1038/s41586-018-0252-6.
[73] K. Thirumalai, P. N. DiNezio, Y. Okumura,
C. Deser, Extreme Temperatures in Southeast Asia Caused by El Niño and Worsened by Global Warming, Nat Commun, Vol. 8, No. 1, 2017,
pp. 15531, https://doi.org/10.1038/ncomms15531.
[74] K. Ashok, S. K. Behera, S. A. Rao, H. Weng,
T. Yamagata, El Niño Modoki and its Possible Teleconnection, J Geophys Res Oceans, Vol. 112, 2007, pp. C11007, https://doi.org/10.1029/2006JC003798.
[75] G. A. Meehl, Influence of the Land Surface in the Asian Summer Monsoon: External Conditions versus Internal Feedbacks, J Clim, Vol. 7, No. 7, 1994, pp. 1033-1049, https://doi.org/10.1175/1520-0442(1994)007<1033:IOTLSI>2.0.CO;2.
[76] S. Yang, K. M. Lau, Influences of Sea Surface Temperature and Ground Wetness onAsian Summer Monsoon, J Clim, Vol. 11, No. 12, 1998, pp. 3230-3246,
https://doi.org/10.1175/1520-0442(1998)011< 3230: IOSSTA>2.0.CO;2.
[77] D. N. Le, J. Matsumoto, T. N. Duc, Onset of the Rainy Seasons in the Eastern Indochina Peninsula, J Clim, Vol. 28, No. 14, 2015, pp. 5645–5666, https://doi.org/10.1175/JCLI-D-14-00373.1.
[78] H. N. Thanh, T. N. Duc, H. N. Hong, P. Baker,
T. P. Van, A Distinction Between Summer Rainy Season and Summer Monsoon Season Over the Central Highlands of Vietnam, Theor Appl Climatol, Vol. 132, No. 3-4, 2018, pp. 1237-1246, https://doi.org/10.1007/s00704-017-2178-6.
[79] H. G. Takahashi, J. M. B. Dado, Relationship between Sea Surface Temperature and Rainfall in the Philippines During the Asian Summer Monsoon, Journal of the Meteorological Society of Japan. Ser. II, Vol. 96, No. 3, 2018, pp. 283-290, https://doi.org/10.2151/jmsj.2018-031.
[80] Y. Fang, Y. Zhang, J. Tang, X. Ren, A Regional Air-sea Coupled Model and Its Application Over East Asia in the Summer of 2000, Adv Atmos Sci, Vol. 27, No. 3, 2010, pp. 583-593, https://doi.org/10.1007/s00376-009-8203-7.
[81] C. Schrum, Regional Climate Modeling and
Air-sea Coupling, Oxford University Press, 2017, https://doi.org/10.1093/acrefore/9780190228620.013.3.
[82] H. W. Lewis et al., The UKC3 Regional Coupled Environmental Prediction System, Geosci Model Dev, Vol. 12, No. 6, 2019, pp. 2357-2400, https://doi.org/10.5194/gmd-12-2357-2019.