Do Van Dang, Tran Thi Chi Linh, Le Thanh Son

Main Article Content

Abstract

Methylene Blue (MB) is a common dye that has various applications in different fields, including medicine, biology, and environmental science. While it can be beneficial in certain contexts, it can also have negative effects on the environment under certain circumstances. In this study, the photodegradation of MB under visible light irradiation using a novel heterojunction CoWO4/g-C3N4 catalyst was investigated. A series of CoWO4/g-C3N4 composites were synthesized and characterized using various techniques, including XRD, SEM, SEM-EDS, FT-IR, and UV–DRS. The results revealed that the 0.3CoWO4/g-C3N4 composite showed the highest efficiency (93%) in degrading MB during the 80-minute photodegradation process, aligning with the pseudo-first-order kinetics. The results provide clear evidence that the formation of CoWO4/g-C3N4 heterojunction greatly enhances the efficiency of photocatalysis by facilitating the swift separation of electron-hole pairs and boosting the redox capability. Additionally, the photodegradation efficiency remained above 90% even after four cycles, suggesting the stability of the catalyst.


 

Keywords: Methylene Blue, CoWO4, g-C3N4, visible light.

References

[1] A. A. Inyinbor, F. A. Adekola, G. A. Olatunji, Kinetics, Isotherms and Thermodynamic Modeling of Liquid Phase Adsorption of Rhodamine B Dye onto Raphia Hookerie Fruit Epicarp, Water Resour Ind., Vol. 15, 2016, pp. 14-27, https://doi.org/10.1016/J.WRI.2016.06.001.
[2] J. Cheng, C. Zhan, J. Wu, Z. Cui, J. Si, Q. Wang, X. Peng, L. S. Turng, Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine, ACS Omega, Vol. 5, 2020, pp. 5389-5400, https://doi.org/10.1021/ACSOMEGA.9B04425.
[3] R. S. P. Mak, E. L. Liebelt, Methylene Blue: An Antidote for Methemoglobinemia and Beyond, Pediatr Emerg Care., Vol. 37, 2021, pp. 474-477, https://doi.org/10.1097/PEC.0000000000002526.
[4] L. Li, Y. Zhao, J.J. Wang, H. Chen, H. Li, J. Wang, Y. Wang, Y. Bai, D. Dang, The [CuI4Cl4] Cluster of A Coordination Complex Based on Polypyridyl Ligand for Heterogeneous Fenton-Like MB Degradation Without Illumination and Electrocatalytic Reduction of H2O2 and K2Cr2O7, Dyes and Pigments, Vol. 207, 2022, pp. 110763, https://doi.org/10.1016/J.DYEPIG.2022.110763.
[5] W. Wang, J. Jiang, C. Zhang, Q. Zhao, K. Wang,
J. Lv, Micro-Electricity Utilization Performance and Microbial Mechanism in Microbial Fuel Cell Powered Electro-Fenton System for Azo Dye Treatment, Biochem Eng J., Vol. 186, 2022,
pp. 108583, https://doi.org/10.1016/J.BEJ.2022.108583.
[6] X. Liu, Y. Hou, J. Guo, Y. Wang, Q. Zuo, C. Wang, Catalytic Ozone Aqueous Decomposition of Methylene Blue Using Composite Metal Oxides, IOP Conf Ser Mater Sci Eng., Vol. 87, 2015,
pp. 012031,
https://doi.org/10.1088/1757-899X/87/1/012031.
[7] G. Zhou, Q. Wang, R. Song, S. Li, S. Yang,
Q. Zhang, Synthesis of Core-Double-Shell Structured Fe3O4@PDA/HKUST-1: Characterization Analysis and Adsorption Performance on Cationic MB Dyes, Journal of Physics and Chemistry of Solids, Vol. 172, 2023, pp. 111094, https://doi.org/10.1016/J.JPCS.2022.111094.
[8] L. Yang, F. Jia, Z. Juan, D. Yu, L. Sun, Y. Song, Y. Wang, L. Huang, J. Tang, High-Permeable Graphene Oxide/Graphitic Carbon Nitride Composite Nanofiltration Membrane For Selective Separation of Dye and Desalination, J Environ Chem Eng., Vol. 11, 2023, pp. 109306, https://doi.org/10.1016/J.JECE.2023.109306.
[9] V. H. Huong, T. C. Nguyen, C. D. Sai, N. H. Pham, A. B. Ngac, T. B. Nguyen, H. V. Bui, V. P. Vu,
B. T. Nguyen, L. V. Dang, T. T. H. Le, T. T. Nguyen, D. V. Do, Facile Synthesis of ZnO/Ag Nanostructure with Enhanced Photocatalytic Activity, Chemnanomat, Vol. 9, No. 6, 2023,
pp. e202300080, https://doi.org/10.1002/CNMA.202300080.
[10] H. T. T. Duong, M. T. P. Duong, O. K. Nguyen, S. T. Le, L. V. Dang, B. T. Nguyen, D. V. Do, Photocatalytic Activity of Ti-SBA-15/C3N4 for Degradation of 2,4-Dichlorophenoxyacetic Acid in Water under Visible Light, J Anal Methods Chem., 2022, ID 5531219, https://doi.org/10.1155/2022/5531219.
[11] Q. Zhong, H. Lan, M. Zhang, H. Zhu, M. Bu, Preparation of Heterostructure g-C3N4/ZnO Nanorods for High Photocatalytic Activity on Different Pollutants (MB, RhB, Cr(VI) and Eosin), Ceram Int., Vol. 46, 2020, pp. 12192-12199, https://doi.org/10.1016/J.CERAMINT.2020.01.265.
[12] Y. Zhang, J. Zhou, Q. Feng, X. Chen, Z. Hu, Visible Light Photocatalytic Degradation of MB Using Uio-66/g-C3N4 Heterojunction Nanocatalyst, Chemosphere, Vol. 212, 2018,
pp. 523-532, https://doi.org/10.1016/J.Chemosphere.2018.08.117.
[13] S. Li, M. Zhang, P. Li, L. Ma, K. Peng, J. Zhao, Y. Liu, R. Wang, Boosting Visible-Light-Driven Photocatalytic Performance by Heterostructure of S-Doped g-C3N4/ MIL-101(Fe), Inorg Chem Commun., Vol. 151, 2023, pp. 110616, https://doi.org/10.1016/J.INOCHE.2023.110616.
[14] X. Lian, Y. Li, Y. Zou, D. An, Q. Wang, Q. Zhou, X. Li, High Vis-Light Photocatalytic Property of g-C3N4 on Four Pollutants (RhB, MB, TC-HCl and p-Nitrophenol), Current Applied Physics, Vol. 39, 2022, pp. 196-204, https://doi.org/10.1016/J.CAP.2022.04.020.
[15] K. Leeladevi, M. Arunpandian, J. V. Kumar,
T. Chellapandi, G. Mathumitha, J. W. Lee, E. R. Nagarajan, CoWO4 Decorated Zno Nanocomposite: Efficient Visible-Light-Activated Photocatalyst for Mitigation of Noxious Pollutants, Physica B Condens Matter., Vol. 626, 2022,
pp. 413493, https://doi.org/10.1016/J.PHYSB.2021.413493.
[16] J. Wei, Z. Liu, Y. Zhang, Z. Yang, Z. Sun, Y. Li, Z. Cheng, Unraveling Charge Transfer Pathways and Mechanisms in Cds@CoWO4 Z-Scheme Heterojunction Photocatalysts for High-Efficiency Environmental Remediation, Sep Purif Technol., Vol. 306, 2023, pp. 122664, https://doi.org/10.1016/J.SEPPUR.2022.122664.
[17] S. L. Prabavathi, K. Govindan, K. Saravanakumar, A. Jang, V. Muthuraj, Construction of Heterostructure CoWO4/g-C3N4 Nanocomposite as An Efficient Visible-Light Photocatalyst for Norfloxacin Degradation, Journal of Industrial And Engineering Chemistry, Vol. 80, 2019,
pp. 558-567, https://doi.org/10.1016/J.JIEC.2019.08.035.
[18] S. Sahoo, A. Behera, S. Mansingh, B. Tripathy,
K. Parida, Facile Construction of CoWO4 Modified g-C3N4 Nanocomposites with Enhanced Photocatalytic Activity under Visible Light Irradiation, Mater Today Proc., Vol. 35, 2021,
pp. 193-197, https://doi.org/10.1016/J.MATPR.2020.04.246.
[19] H. Ashiq, N. Nadeem, A. Mansha, J. Iqbal, M. Yaseen, M. Zahid, I. Shahid, g-C3N4/Ag@CoWO4: A Novel Sunlight Active Ternary Nanocomposite for Potential Photocatalytic Degradation of Rhodamine B Dye, Journal of Physics and Chemistry of Solids, Vol. 161, 2022, pp. 110437, https://doi.org/10.1016/J.JPCS.2021.110437.
[20] C. Yue, J. Jiang, M. Li, X. Wang, T. Li, Z. Zhao, S. Dong, Accelerating the Peroxymonosulfate Activation and Charge Transfer by Construction of Fermi Energy Level-Matched CoWO4/g-C3N4 Photocatalyst For Typical Antibiotics Degradation, Sep Purif Technol., Vol. 301, 2022, pp. 122020, https://doi.org/10.1016/J.SEPPUR.2022.122020.