Vo Huu Cong, Nguyen Duc Canh

Main Article Content

Abstract

Animal husbandry activities, industrial development, along with human activities have led to a generation of high organic content wastewater. These wastewater pose severe environmental issues when the BOD or COD exceeded the limit of national regulation. The conventional treatments of wastewater requires high cost whereas large proportion of nutrients in the forms of carbon, nitrogen, and phosphorus being wasted. In the view of circular economy, these wastewater can be simutaneosly treated and recovered as  biogas including CH4, H2, and N2. The efficiency of gas recovery is evaluated through the fluctuations in temperature, pH, and nutrients in the treatment tank. The pH in range of 5.5-6.5 shows the most optimal for H2 production. The maximum threshold of CH4 gas generation was obtained from pH 7.6-8.3. The efficiency of H2S gas collection is much higher than that of CH4 and H2 but it is not feasible to use because of its high toxicity and odor. The essential factors to evaluate the efficiency of nutrient treatment and the production of H2 and CH4 in treatment of three types of wastewater above are the BOD/COD ratio and the BOD:N:P ratio.

Keywords: Anaerobic digestion, biogas, nutrients, organic compounds, wastewater.

References

[1] N. D. Ba, N. T. Q. Hung, B. T. C. Nhi, N. K. Hue, V. M. Sang, L. T. L. Thao, D. Q. Tri, N. M. Ky, Auditing Piggery Waste at the Farms in Loc Ninh District, Binh Phuoc Province, Vietnam Journal of Hydrometeorology, Vol. 744, 2022, pp. 17-27, https://doi.org/10.36335/VNJHM.2022(744).17-27 (in Vietnamese).
[2] V. H. Cong, P. T. Hang, Waste Audit of Cattle Production in Minh Chau Commune, Ba Vi District, Hanoi, TNU Journal of Science and Technology, Vol. 207, 2019, pp. 129-134
(in Vietnamese).
[3] P. D. Thanh, N. M. T. Chinh, P. T. N. Han, P. L. T. Hang, N. L. Huong, Biofilm Attached Cultivation of Spirulina Platensis under Light- Emitting Diodes (Led) for Anaerobically Digested Piggery Wastewater, Journal of Food Science and Technology, Vol. 22, No. 4, 2022, pp. 105-114
(in Vietnamese).
[4] P. M. Hen, N. V. Thanh, V. H. Cong, Circular Economy Approach in Agricultural Wastes Management: A Case Study in Minh Chau Commune, Ba Vi, Hanoi, TNU Journal of Science and Technology, Vol. 226, 2021, pp. 100-107, https://doi.org/10.34238/tnu-jst.4335 (in Vietnamese).
[5] N. T. T. Linh, T. H. Long, N. T. Thu, Circular Economic Development in Agriculture to Sustainable Development in Hai Phong, Journal of Marine Science and Technology, Vol. 71, 2022,
pp. 99-102 (in Vietnamese).
[6] D. N. Thang, T. B. Hong, Estimating Benefits of Biogas Application in Binh Luc District, Ha Nam Province, Journal of Economics and Development, Vol. 198, 2013, pp. 71-79 (in Vietnamese).
[7] N. T. Hong, P. K. Lieu, Evaluation of the Efficiency of Pig Farming Wastewater Treatment by Household-Scale Biogas in Thua Thien Hue, Hue University Journal of Science, Vol. 73, 2012, pp. 83-91 (in Vietnamese).
[8] N. T. K. Anh, Study on Multi-Benefit Assessment Method in Pig Farming Wastewater Treatment by Biogas System, Environmental Science Institute, 2021 (in Vietnamese).
[9] J. Piekutin, M. Puchlik, M. Haczykowski,
K. Dyczewska, The Efficiency of the Biogas Plant Operation Depending on the Substrate Used, Energies, Vol. 14, 2021, pp. 3157, https://doi.org/10.3390/en14113157.
[10] L. Deng, Y. Liu, D. Zheng, L. Wang, X. Pu,
L. Song, Z. Wang, Y. Lei, Z. Chen, Y. Long, Application and Development of Biogas Technology for the Treatment of Waste in China, Renewable and Sustainable Energy Reviews,
Vol. 70, 2017, pp. 845-851, https://doi.org/10.1016/j.rser.2016.11.265.
[11] M. Stanisław, D. Jacek, F. M. F. Jesus, M. Jakub, P. Patrycja, G. Łukasz, New Trends in Substrates and Biogas Systems in Poland, Journal of Ecological Engineering, Vol. 21, 2020, pp. 19-25, https://doi.org/10.12911/22998993/119528.
[12] P. V. Dinh, N. D. Manh, T. H. Le, Effects of pH Conditions on Two-stage Anaerobic Digestion of Biodegradable organic Solid Waste, Journal of Science and Technology in Civil Engineering,
Vol. 17, 2023, pp. 166-173, https://doi.org/10.31814/stce.huce2023-17(3V)-13 (in Vietnamese).
[13] L. H. Viet, L. T. N. Y, V. T. D. Nhi, N. V. C. Ngan, Study on Treatment of Biogas Effluent by High Rate Spirulina sp, Algae Culture Pond, Can Tho University Journal of Science, Vol. 49a, 2017,
pp. 1-10, https://doi.org/10.22144/ctu.jvn.2017.001 (in Vietnamese).
[14] A. Schnürer, Å. Jarvis, Microbiology of the Biogas Process, 2018, pp. 1-167.
[15] M. J. B. Kabeyi, O. A. Olanrewaju, Biogas Production and Applications in the Sustainable Energy Transition, Journal of Energy, 2022, pp. 1-43, https://doi.org/10.1155/2022/8750221.
[16] S. A. Saadabadi, R. E. F. Lindeboom, P. V. Aravind, A. T. Thattai, L. Fan, H. Spanjers, Solid Oxide Fuel Cells Fuelled with Biogas: Potential and constraints, Renewable Energy, Vol. 134, 2019, pp. 194-214, https://doi.org/10.1016/j.renene.2018.11.028.
[17] N. V. Anh, Research to Convert Diesel Tractor K2600 Using Biogas Fuel, Vietnam Journal of Agricultural Sciences, Vol. 3, 2019, pp. 1371-1378 (in Vietnamese).
[18] B. V. Ga, B. T. M. Tu, L. M. Tien, B. V. Hung,
N. L. C. Thanh, Advance Ignition Angle Adjustment for Engine Fueled with Biogas-Syngas-Hydrogen in Hybrid Renewable Energy System, The University of Danang - Journal of Science and Technology, Vol. 20, No. 3, 2022,
pp. 1-6 (in Vietnamese).
[19] N. V. Hai, N. V. Anh, Designing and Manufacturing Pressure Mass Flow Meters for Biogas Engines, The University of Danang - Journal of Science and Technology, Vol. 126,
No. 5, 2018, pp. 40-44 (in Vietnamese).
[20] F. Legrottaglie, E. Mattarelli, C. A. Rinaldini,
F. Scrignoli, Application to Micro-Cogeneration of an Innovative Dual Fuel Compression Ignition Engine Running on Biogas, International Journal of Thermofluids, Vol. 10, 2021, pp. 100093, https://doi.org/10.1016/j.ijft.2021.100093.
[21] W. D. R. Wulan, U. Hamidah, A. Komarulzaman, R. T. Rosmalina, N. Sintawardani, Domestic Wastewater in Indonesia: Generation, Characteristics and Treatment, Environmental Science and Pollution Research, Vol. 29, 2022,
pp. 32397-32414, https://doi.org/10.1007/s11356-022-19057-6.
[22] F. Cheng, Z. Dai, S. Shen, S. Wang, X. Lu, Characteristics of Rural Domestic Wastewater with Source Separation, Water Science and Technology, Vol. 83, No. 1, 2021, pp. 233-246, https://doi.org/10.2166/wst.2020.557.
[23] B. Teichgräber, D. Schreff, C. Ekkerlein,
P. A.Wilderer, SBR Technology in Germany - An Overview, Water Science and Technology,
Vol. 43, No. 3, 2001, pp. 323-330.
[24] V. T. Thu, V. T. M. Hanh, D. K. Uan, A Study on the Effect of Sludge Concentrations on the Efficiency of Wastewater Treatment by SBR Technology, Petrovietnam Journal, Vol. 8, 2014, pp. 59-63 (in Vietnamese).
[25] N. T. H. Giang, T. T. C. Phuong, T. V. Phuoc, Efficiency of Domestic Wastewater Treatment by Biological Trickling Filter, Hue University Journal of Science, Vol. 127, No. 2A, 2018, pp. 43-53, https://doi.org/10.26459/hueuni-jtt.v127i2A.4747 (in Vietnamese).
[26] H. T. Diep, T. Q. Vinh, N. H. Dung, L. Q. Loan,
V. T. T. Nhung, P. A. Vu, Impact of Salinity on COD Treatment Efficiency in the Soy Sauce Wastewater Treatment by UASB Model in Vitro, Journal of Food Science and Technology, Vol. 21, No. 4, 2021, pp. 57-65 (in Vietnamese).
[27] N. M. Khai, N. D. Hien, L. T. H. Oanh, T. T. Hong, P. T. Nga, N. T. Ha, Research on Methane Generation from UASB Wastewater Treatment System at Hoa Binh Sugar Joint Stock Company, Journal of Science and Technology, Vol. 1, No. 4, 2015, pp. 45-49 (in Vietnamese).
[28] V. Karthik, J. B. Isabel, S. Kavitha, J. Rajesh Banu, P. Sivashanmugam, S. Periyasamy, T. Temesgen, Wastewater to Biogas Recovery, Wastewater Treatment Plants as Biorefineries, Elsevier Publishing Company, Netherlands, Vol. 2,
pp. 301-314, 2022, https://doi.org/10.1016/B978-0-323-90178-9.00029-9.
[29] L. H. Viet, V. T. Truong, N. V. C. Ngan, Study on Suitable Hydraulic Retention Time of AAO Process to Treat Effluent from Biogas Plant, Can Tho University Journal of Science, Vol. 56,
No. 1A, 2020, pp. 49-57, https://doi.org/10.22144/ctu.jvn.2020.005
(in Vietnamese).
[30] J. Laramee, S. Tilmans, J. Davis, Costs and Benefits of Biogas Recovery from Communal Anaerobic Digesters Treating Domestic Wastewater: Evidence from Peri-Urban Zambia, Journal of Environmental Management, Vol. 210, 2018, pp. 23-35, https://doi.org/10.1016/j.jenvman.2017.12.064.
[31] I. O. Agyeman, E. Plaza, Z. Cetecioglu, A Pilot-Scale Study of Granule-Based Anaerobic Reactors for Biogas Recovery from Municipal Wastewater under Sub-Mesophilic Conditions, Bioresource Technology Vol. 337, 2021, pp. 125431, https://doi.org/10.1016/j.biortech.2021.125431.
[32] N. V. Thoan, Research on Sludge Pretreatment using Ultrasonic and Anaerobic Digestion of Sludge from Son Tra-Da Nang Wastewater Treatment Station Combined with Biogas Recovery, Master, Environmental Technique, Danang University of Science and Technology, 2019 (in Vietnamese).
[33] G. Mao, H. Hu, X. Liu, J. Crittenden, N. Huang, A Bibliometric Analysis of Industrial Wastewater Treatments from 1998 to 2019, Environmental Pollution, Vol. 275, 2021, pp. 115785, https://doi.org/10.1016/j.envpol.2020.115785.
[34] N. T. T. Truc, L. V. Tuan, T. Q. Tung, Evaluation of the Ability of Some Fungal Strains to Treat Tapioca Starch Production Wastewater, Hue University Journal of Science, Vol. 73, No. 4, 2012, pp. 227-235 (in Vietnamese).
[35] I. K. Kapdan, F. Kargi, Bio-Hydrogen Production from Waste Materials, Enzyme and Microbial Technology, Vol. 38, No. 5, 2006, pp. 569-582, https://doi.org/10.1016/j.enzmictec.2005.09.015.
[36] J. Wei, Z. Liu, X. Zhang, Biohydrogen Production from Starch Wastewater and Application in Fuel Cell, International Journal of Hydrogen Energy, Vol. 35, No. 7, 2010, pp. 2949-2952, https://doi.org/10.1016/j.ijhydene.2009.05.035.
[37] N. Zhang, W. Liu, Y. Peng, X. Song, Anaerobic Membrane Bioreactors for Livestock Wastewater Treatment and Resource Recovery: Opportunities and Challenges, Current Pollution Reports, Vol. 7, 2021, pp. 277-285, https://doi.org/10.1007/s40726-021-00192-6.
[38] P. N. Tuong, H. T. Trang, C. T. M. Tien, T. T. Ha, Efficiency Investigation of Livestock Wastewater after Biogas Treatment by Biofilter Technology Combined with Constructed Wetlands, Ho Chi Minh City Open University Journal of Science - Engineering and Technology, Vol. 15, No. 1, 2020, pp. 27-46, https://doi.org/10.46223/hcmcoujs.tech. vi.15.1.1019.2020 (in Vietnamese).
[39] L. T. Thoa, D. D. Truong, D. T. Nga. An Analysis of Potential and Barriers for Application of Biogas in Pig Waste Treatment in Vietnam, Journal of Environment, Vol. 1, 2021, pp. 78-82 (in Vietnamese).
[40] D. Q. Trung, D. V. Huong, B. D. Cam, N. T. Nham, N. Q. Minh, C. X. Quang, Research on Anaerobic Decomposition of Pig Waste and Organic Waste in Rural Activities to Produce Methane and Organic Fertilizers, Journal of Science and Technology, Vol. 61, No. 1, 2018, pp. 16-20 (in Vietnamese).
[41] P. T. T. Mai, Study on the Optimum Conditions for Anaerobic Digestion Based Biogas Production from Pineapple Leaves, Vietnam Journal of Science, Technology and Engineering, Vol. 62, No. 3, 2020, pp. 20-25 (in Vietnamese).
[42] A. C. Bader, H. J. Hussein, M. T. Jabar, BOD: COD Ratio as Indicator for Wastewater and Industrial Water Pollution, International Journal of Special Education, Vol. 37, No. 3, 2022, pp. 1-8.
[43] D. T. G. Huong, A Study on Swine Wastewater Treatment after Biogas Digestion using Actinastrum sp., Ho Chi Minh City University of Education Journal of Science, Vol. 16, No. 12, 2019, pp. 929-937 (in Vietnamese).
[44] J. J. Estévez, E. V. Mercado, J. G. Jaramillo,
P. Rodríguez, J. M. Herrero, H. Escalante,
L. Castro, from Laboratory to Farm-Scale Psychrophilic Anaerobic Co-Digestion of Cheese Whey and Cattle Manure, Bioresource Technology, Vol. 19, 2022, pp. 101168, https://doi.org/10.1016/j.biteb.2022.101168.
[45] N. Q. Lich, V. Q. Linh, T. D. Hanh, N. Q. Huy,
N. V. Khanh, L. V. Tuan, C. T. Huong, Efficiency of Integrated System using Biochar and Waste Stabilization Pond for Treatment of Effluent from Swine Manure Biogas Digester, Hue University Journal of Science: Agriculture and Rural Development, Vol. 130, No. 3B, 2021, pp. 119-130, https://doi.org/10.26459/hueunijard.v130i3B.6024 (in Vietnamese).
[46] N. T. Luong, T. T. M. Khanh, V. D. Anh, L. V. Nhat, P. M. Hen, H. T. T. Hang, Simultaneous Removal of Organic and Nitrogen Pollutants in Biogas Effluent by A2O System, the University of Danang - Journal of Science and Technology,
Vol. 19, No. 4, 2020, pp. 43-45 (in Vietnamese).
[47] B. T. K. Anh, N. V. Thanh, N. H. Chuyen, B. Q. Lap, Analysis and Evaluation: Applicability of the Constructed Wetland for Piggery Wastewater Treatment after Biogas Process, Journal of Water Resources & Environmental Engineering, Vol. 66, 2019, pp. 10-15 (in Vietnamese).
[48] C. T. Ha, L. V. Chieu, N. V. Ha, N. T. Quan,
V. N. Duy, V. T. T. Tam, Quality of Piggery Wastewater and the Role of Raw Wastewater Quality Assessment in Determining The Treatment Technology, Vietnam Journal of Science, Technology and Engineering, Vol. 1, No. 4, 2015, pp. 50-54 (in Vietnamese).
[49] D. T. Hau, L. T. Thuan, T. T. A. Linh, Study on Some Pollutant Substances Treatment in Small and Medium Size of Breeding Waste Water by Zeolit Subtitles X, P1 Combined with Aluminum Oxide, TNU Journal of Science and Technology, Vol. 204, No. 11, 2019, pp. 85-90 (in Vietnamese).
[50] T. V. Cuong, N. V. Huan, N. Q. Huy, N. H. Ngoc, P. T. L. Anh, H. V. Huan, The Effects of Livestock Breeding on the Quality of Surface Water in Lam Thao District, Phu Tho Province, Journal of Forestry Science and Technology, Vol. 1, 2015,
pp. 3-9 (in Vietnamese).
[51] T. T. Pha, D. T. H. Trang, D. T. M. Hoa, Evaluation of the Quality of Livestock Wastewater after Biogas Tank, Journal of Science and Technology, Vol. 166, No. 6, 2017, pp. 197-200 (in Vietnamese).
[52] N. T. T. Ha, H. T. T. Hang, D. P. Chi, D. T. Dung, T. Q. Huy, Treatment of Domestic Wastewater and Livestock Wastewater by Algae on the Filter Material, Journal of Agricultural Science and Technology, Vol. 17, No. 10, 2019, pp. 826-834
(in Vietnamese).
[53] I. Y. L. Pacheco, D. C. Nieves, C. S. Salazar,
A. S. Núñez, A. A. Gallegos, D. Barceló,
S. Afewerki, H. M. N. Iqbal, R. P. Saldívar, Combination of Nejayote and Swine Wastewater as A Medium for Arthrospira Maxima and Chlorella Vulgaris Production and Wastewater Treatment, Science of The Total Environment, Vol. 676, 2019, pp. 356-367, https://doi.org/10.1016/j.scitotenv.2019.04.278.
[54] C. D. L. M. Orozco, I. J. G. Acuña, R. A. S. Terán, H. E. F. López, H. O. R. Arias, J. M. O. Rivero, Removing Organic Matter and Nutrients from Pig Farm Wastewater with a Constructed Wetland System, International Journal of Environmental Research and Public Health, Vol. 15, No. 5, 2018, pp. 2-16, https://doi.org/10.3390/ijerph15051031.
[55] P. A. G. Tineo, U. D. Hinojosa, L. R. D. Mirquez, E. R. M. Escalante, P. G. Moroyoqui, R. G. U. Mercado, Performance Improvement of an Integrated Anaerobic-Aerobic Hybrid Reactor for the Treatment of Swine Wastewater, Journal of Water Process Engineering, Vol. 34, 2020,
pp. 101164, https://doi.org/10.1016/j.jwpe.2020.101164.
[56] K. L. Aguirre, E. H. Núñez, A. G. Sánchez, R. M. Novelo, C. P. Caballero, G. G. Vallejos, A rapid and Green Method for the Determination of Veterinary Pharmaceuticals in Swine Wastewater by Fluorescence Spectrophotometry, Bulletin of Environmental Contamination and Toxicology, Vol. 103, 2019, pp. 610-616.
[57] Y. Liu, S. Ma, L. Huang, S. Wang, G. Liu, H. Yang, D. Zheng, J. Cheng, Z. Xu, L. Deng, Two-Step Heating Mode with the Same Energy Consumption as Conventional Heating for Enhancing Methane Production during Anaerobic Digestion of Swine Wastewater, Journal of Environmental Management, Vol. 209, 2018, pp. 301-307, https://doi.org/10.1016/j.jenvman.2017.12.061.
[58] Q. Sui, C. Jiang, D. Yu, M. Chen, J. Zhang,
Y. Wang, Y. Wei, Performance of a Sequencing-Batch Membrane Bioreactor (SMBR) with an Automatic Control Strategy Treating High-Strength Swine Wastewater, Journal of Hazardous Materials, Vol. 342, 2018, pp. 210-219, https://doi.org/10.1016/j.jhazmat.2017.05.010.
[59] R. Zhang, M. Liao, J. Wu, X. Lu, H. Tan, J. Sun, X. P. Liao, Y. H. Liu, Metagenomic Insights into the Influence of Mobile Genetic Elements on Args Along Typical Wastewater Treatment System on Pig Farms in China, Science of The Total Environment, Vol. 839, 2022, pp. 156313, https://doi.org/10.1016/j.scitotenv.2022.156313.
[60] A. Reza, S. Shim, S. Kim, S. Ahn, S. Won, C. Ra, Rational Budgeting Approach as a Nutrient Management Tool for Mixed Crop-Swine Farms In Korea, Asian-Australasian Journal of Animal Sciences, Vol. 33, No. 9, 2020, pp. 1520-1532, https://doi.org/ 10.5713/ajas.19.0640.
[61] J. Park, Y. Kim, B. Kim, K. Seo, Spread of Multidrug-Resistant Escherichia Coli Harboring Integron via Swine Farm Waste Water Treatment Plant, Ecotoxicology and Environmental Safety, Vol. 149, 2018, pp. 36-42, https://doi.org/10.1016/j.ecoenv.2017.10.071.
[62] S. Shim, A. Reza, S. Kim, N. Ahmed, S. Won,
C. Ra, Simultaneous Removal of Pollutants and Recovery of Nutrients from High-Strength Swine Wastewater using a Novel Integrated Treatment Process, Animals, Vol. 10, No. 5, 2020, pp. 835.
[63] G. Martinelli, A. Dadomo, D. A. D. Luca,
M. Mazzola, M. Lasagna, M. Pennisi, G. Pilla,
E. Sacchi, P. Saccon, Nitrate Sources, Accumulation and Reduction in Groundwater from Northern Italy: Insights Provided by a Nitrate and Boron Isotopic Database, Applied Geochemistry, Vol. 91, 2018, pp. 23-35, https://doi.org/10.1016/j.apgeochem.2018.01.011.
[64] S. Petrin, I. Patuzzi, A. D. Cesare, A. Tiengo,
G. Sette, G. Biancotto, G. Corno, M. Drigo,
C. Losasso, V. Cibin, Evaluation and Quantification of Antimicrobial Residues and Antimicrobial Resistance Genes in Two Italian Swine Farms, Environmental Pollution, Vol. 255, 2019, pp. 113183, https://doi.org/10.1016/j.envpol.2019.113183.
[65] S. Rossi, A. Pizzera, M. Bellucci, F. Marazzi,
V. Mezzanotte, K. Parati, E. Ficara, Piggery Wastewater Treatment with Algae-Bacteria Consortia: Pilot-Scale Validation and Techno-Economic Evaluation at Farm Level, Bioresource Technology, Vol. 351, 2022, pp. 127051, https://doi.org/10.1016/j.biortech.2022.127051.
[66] G. Yoshida, N. Takeda, Y. Kitazono, K. Toyoda, K. Umetsu, I. Ihara, Removal of Tetracycline Antibiotics from Dairy Farm Wastewater by Electrocoagulation using Iron Electrodes, Journal of Water and Environment Technology, Vol. 18, No. 3, 2020, pp. 157-165.
[67] Y. Takeuchi, F. J. Andriamano, S. Yasui,
M. Iwasaki, T. Nishida, I. Ihara, K. Umetsu, Feasibility Study of A Centralized Biogas Plant Performance in A Dairy Farming Area, Journal of Material Cycles and Waste Management Vol. 20, 2018, pp. 314-322.
[68] K. Haga, Sustainable Recycling of Livestock Wastes by Composting and Environmentally Friendly Control of Wastewater and Odors, Journal of Environmental Science and Engineering,
Vol. 10, 2021, pp. 163-178, https://doi.org/10.17265/2162-5263/2021.05.001.
[69] D. F. Shams, N. Singhal, P. Elefsiniotis, Effect of Feed Characteristics and Operational Conditions on Treatment of Dairy Farm Wastewater in A Coupled Anoxic-Upflow and Aerobic System, Biochemical Engineering Journal, Vol. 133, 2018, pp. 186-195.
[70] M. H. Cantillo, M. Lay, P. Kovalsky, Anaerobic Digestion of Dairy Effluent in New Zealand, Time to Revisit the Idea?, Energies, Vol. 16, No. 6, 2023, pp. 2859, https://doi.org/10.3390/en16062859.
[71] S. Sivaprakasam, K. Balaji, A Review of Upflow Anaerobic Sludge Fixed Film (UASFF) Reactor for Treatment of Dairy Wastewater, Materials Today: Proceedings, 2021, pp. 1879-1883, https://doi.org/10.1016/j.matpr.2020.10.822.
[72] M. N. Tahir, R. Riaz, M. Bial, H. M. Nouman, Current Standing and Future Challanges of Dairying in Parkistan: A Status Update, Vol. 1, 2019, pp. 1-25, https://dx.doi.org/10.5772/intechopen.73442.
[73] A. G. Capodaglio, Integrated, Decentralized Wastewater Management for Resource Recovery in Rural and Peri-Urban Areas, Resources, Vol. 6, No. 2, pp. 1-20, 2017, https://doi.org/10.3390/resources6020022.
[74] S. Verm, A. Daverey, A. Sharma, Slow Sand Filtration for Water and Wastewater Treatment – A Review, Environmental Technology Reviews,
Vol. 6, No. 1, 2017, pp. 47-58, https://doi.org/10.1080/21622515.2016.1278278.
[75] Y. Zhang, M. Yang, X. Huang, Arsenic (V) Removal with A Ce (IV)-Doped Iron Oxide Adsorbent, Chemosphere, Vol. 51, No. 9, 2003,
pp. 945-952, https://doi.org/10.1016/S0045-6535 (02)00850-0.
[76] N. X. Cuong, N. T. Loan, Domestic Wastewater Treatment Efficiency of Integrated Artificial Wetland System, VNU Journal of Science: Earth and Environmental Sciences, Vol. 32, No. 1, 2016, pp. 10-17 (in Vietnamese).
[77] L. H. Viet, N. V. C. Ngan, Effect of Hydraulic Retention Time on Domestic Wastewater Treatment Efficiency by the Moving Bed Biofilm Reactor and Handmade Membrane Bioreactor, Can Tho University Journal of Science, Vol. 59, No. 2, 2023, pp. 17-26, https://doi.org/10.22144/ctu.jvn. 2023.060 (in Vietnamese).
[78] K. Lavane, N. T. C. Ngan, N. T. T. Le, D. T. C. Thu, T. N. N. Minh, Reusing Beehive Charcoal Combustion Residue as Biofilter Media for Treatment of Household Domestic Wastewater, HUAF Journal of Agricultural Science & Technology, Vol. 2, No. 2, 2018, pp. 693-704, https://doi.org/10.46826/huaf-jasat.v2n2y2018.155.
[79] K. Lavane, N. T. Thanh, P. V. Toan, Reusing Plastic Straws as Carrier in A Submerged Biofilter to Treat Domestic Wastewater, Can Tho University Journal of Science, Vol. 57, 2021, pp. 121-129, https://doi.org/ 10.22144/ctu.jsi.2021.035.
[80] C. M. Manaia, J. Rocha, N. Scaccia, R. Marano,
E. Radu, F. Biancullo, F. Cerqueira, G. Fortunato, I. C. Iakovides, I. Zammit, I. Kampouris, I. V. Moreira, O. C. Nunes , Antibiotic Resistance in Wastewater Treatment Plants: Tackling the Black Box, Environment International, Vol. 115, 2018, pp. 312-324, https://doi.org/10.1016/j.envint.2018.03.044.
[81] X. Wang, X. Zhou, S. Ma, Z. Wang, E. Wang,
Z. Li, White Carbon Black Wastewater Treatment by Electrodialysis: Salt Separation, Silicon Sol Transporting and Wastewater Recycling, Journal of Environmental Chemical Engineering, Vol. 10, No. 3, 2022, pp. 107856, https://doi.org/10.1016/j.jece.2022.107856.
[82] W. D. R. Wulan, U. Hamidah, A. Komarulzaman, R. T. Rosmalina, N. Sintawardani, Domestic Wastewater in Indonesia: Generation, Characteristics and Treatment, Environmental Science and Pollution Research, Vol. 29, 2022,
pp. 32397-32414, https://doi.org/10.1007/s11356-022-19057-6.
[83] M. Besson, S. Berger, L. T. Barna, E. Paul,
M. Spérandio, Environmental Assessment of Urine, Black and Grey Water Separation for Resource Recovery in A New District Compared to Centralized Wastewater Resources Recovery Plant, Journal of Cleaner Production, Vol. 301, 2021, pp. 126868, https://doi.org/10.1016/j.jclepro.2021.126868.
[84] A. A. Inyinbor, O. S. Bello, A. P. Oluyori, H. E. Inyinbor, A. E. Fadiji, Wastewater Conservation and Reuse in Quality Vegetable Cultivation: Overview, Challenges and Future Prospects, Food Control, Vol. 98, 2019, pp. 489-500, https://doi.org/10.1016/j.foodcont.2018.12.008.
[85] J. Liu, L. Liu, Z. Huang, Y. Fu, Z. Huang, Contaminant Removal and Optimal Operation of Bio-Slow Sand Filtration Water Treatment Based on Nature-Based Solutions, Polish Journal of Environmental Studies, Vol. 29, No. 2, 2020,
pp. 1703-1713, https://doi.org/10.15244/pjoes/109728.
[86] K. Abdiyev, S. Azat, E. Kuldeyev, D. Ybyraiymkul, S. Kabdrakhmanova, R. Berndtsson, Review of Slow Sand Filtration for Raw Water Treatment with Potential Application in Less-Developed Countries, Water, Vol. 15, No. 11, 2023, pp. 2007, https://doi.org/10.3390/w15112007.
[87] P. C. L. Lehto, J. T. Pulkkinen, T. Kiuru,
J. Koskela, J. Vielma, Efficient Water Treatment Achieved in Recirculating Aquaculture System using Woodchip Denitrification and Slow Sand Filtration, Environmental Science and Pollution Research, Vol. 28, 2021, pp. 65333-65348.
[88] N. X. Hoang, L. H. Viet, Treatment of Dye-Baths from Textile Industry by Nano-Filtration, Can Tho University Journal of Science, Vol. 23b, 2012,
pp. 272-283 (in Vietnamese).
[89] S. M. Abdelbasi, A. E. Shalan, An Overview of Nanomaterials for Industrial Wastewater Treatment, Korean Journal of Chemical Engineering, Vol. 36, 2019, pp. 1209-1225.
[90] H. V. Hung, V. H. Tap, L. T. Cuc, N. Hoang, N. T. N. Ha, A Mini Review on the Application of Ozone Technology to Treat Textile Dyeing Wastewater, TNU Journal of Science and Technology, Vol. 228, No. 6, 2023, pp. 49-60, 2023, https://doi.org/10.34238/tnu-jst.7668 (in Vietnamese).
[91] N. T. H. Tham, D. V. Thuan, T. B. Thuy, Synthesizing and Evaluating Adsorption Kinetics of Removing Congo Red Dyes Onto Exfoliated Graphite, Journal of Science and Technology - Nguyen Tat Thanh University, Vol. 3, No. 2, 2020, pp. 1-4,
https://doi.org/10.55401/jst.v3i2.126 (in Vietnamese).
[92] D. S. Duc, V. T. Mai, D. T. P. Lan, Color Treatment of Paper Waste Water With Fenton React, Science and Technology Development Journal, Vol. 12, No. 5, 2009, pp. 37-45 (in Vietnamese).
[93] N. Q. Quyen, V. D. Thao, D. T. T. Linh, Research on Wastewater Treatment from the Paper Production by Flocculation in Combinationwith Advanced Oxidation, Journal of Science and Technique - Le Quy Don Technical University, Vol. 13, No. 4, 2018, pp. 3-10 (in Vietnamese).
[94] N. M. Khoi, N. H. Cuong, L. N. Sinh, Technology of Mimosa and Thps Combination Tanning is A Method of Tanning Environmentally Friendly, Scientific Journal of Hanoi Metropolitan University, Vol. 2, 2016, pp. 107-115 (in Vietnamese).
[95] N. T. T. My, T. M. Nhut, L. T. Hieu, P. T. Tot,
B. X. Thanh, Assessment of Taking Water Treatment Capacity by MBR Technology Combined Mobile Cards, Basic Research in Earth and Environmental Sciences: Proceedings, HCM City, 2019, pp. 508-510, https://doi.org/10.15625/vap. 2019.000191 (in Vietnamese).
[96] R. T. Mamińska, Limits and Perspectives of Pulp and Paper Industry Wastewater Treatment – A Review, Renewable and Sustainable Energy Reviews, Vol. 78, 2017, pp. 764-772, https://doi.org/10.1016/j.rser.2017.05.021.
[97] M. A. Hubbe, J. R. Metts, D. Hermosilla, M. A. Blanco, L. Yerushalmi, F. Haghighat, P. L. Lehto, Z. Khodaparast, M. Kamali, A. Elliott, Wastewater Treatment and Reclamation: A Review of Pulp and Paper Industry Practices and Opportunities, BioResources, Vol. 11, No. 3, 2016, pp. 7953-8091.
[98] J. Tang, Y. Pu, T. Zeng, Y. Hu, J. Huang, S. Pan, X. Wang, Y. Li, A. Abomohra, Enhanced Methane Production Coupled with Livestock Wastewater Treatment using Anaerobic Membrane Bioreactor: Performance and Membrane Filtration Properties, Bioresource Technology, Vol. 345, 2022, pp. 126470, https://doi.org/10.1016/j.biortech.2021.126470.
[99] M. A. Musa, S. I. Idrus, C. M. Hasfalina, N. N. N. Daud, Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate, International Journal of Environmental Research and Public Health,
Vol. 15, No. 10, 2018, pp. 2220, https://doi.org/10.3390/ijerph15102220.
[100] N. Norouzi, H. Khajehpour, Simulation of Methane Gas Production Process from Animal Waste in a Discontinuous Bioreactor, Biointerface Research in Applied Chemistry, Vol. 11, No. 6, 2018,
pp. 13850-13859, https://doi.org/10.33263/BRIAC116.1385013859.
[101] P. Latifi, M. Karrabi, S. Danesh, Anaerobic Co-Digestion of Poultry Slaughterhouse Wastes with Sewage Sludge in Batch-Mode Bioreactors (Effect of Inoculum-Substrate Ratio and Total Solids), Renewable and Sustainable Energy Reviews,
Vol. 107, 2019, pp. 288-296, https://doi.org/10.1016/j.rser.2019.03.015.
[102] A. Noyola, J. M. M. Sagastume, J. E. L. Hernandez, Treatment of Biogas Produced in Anaerobic Reactors for Domestic Wastewater: Odor Control and Energy/Resource Recovery, Environmental Science and Biotechnology, Vol. 5, 2006, pp. 93-114.
[103] A. Sánchez, L. R. Hernández, D. Buntner, A. L. E. García, I. Tejero, J. M. Garrido, Denitrification Coupled with Methane Oxidation in A Membrane Bioreactor after Methanogenic Pre‐Treatment
of Wastewater, Journal of Chemical Technology
& Biotechnology, Vol. 91, No. 12, 2016,
pp. 2950-2958, https://doi.org/10.1002/jctb.4913.
[104] L. Alibardi, N. Bernava, R. Cossu, A. Spagni, Anaerobic Dynamic Membrane Bioreactor for Wastewater Treatment at Ambient Temperature, Chemical Engineering Journal, Vol. 284, 2016,
pp. 130-138, https://doi.org/10.1016/j.cej.2015.08.111.
[105] E. Vaez, H. Zilouei, Towards the Development of Biofuel Production from Paper Mill Effluent, Renewable Energy, Vol. 146, 2020, pp. 1408-1415, https://doi.org/10.1016/j.renene.2019.07.059.
[106] T. Schmidt, P. Harris, S. Lee, B. K. M. Cabe, Investigating the Impact of Seasonal Temperature Variation on Biogas Production from Covered Anaerobic Lagoons Treating Slaughterhouse Wastewater using Lab Scale Studies, Journal of Environmental Chemical Engineering, Vol. 7,
No. 3, 2019, pp. 103077, https://doi.org/10.1016/j.jece.2019.103077.
[107] D. Thanos, A. Maragkaki, D. Venieri,
M. Fountoulakis, T. Manios, Enhanced Biogas Production in Pilot Digesters Treating A Mixture of Olive Mill Wastewater and Agro-Industrial or Agro-Livestock By-Products in Greece, Waste and Biomass Valorization, Vol. 12, 2021, pp. 135-143.
[108] J. Ji, J. Ni, A. Ohtsu, N. Isozumi, Y. Hu, R. Du,
Y. Chen, Y. Qin, K. Kubota, Y. Y. Li, Important Effects of Temperature on Treating Real Municipal Wastewater by A Submerged Anaerobic Membrane Bioreactor: Removal Efficiency, Biogas, and Microbial Community, Bioresource Technology, Vol. 336, 2021, pp. 125306, https://doi.org/10.1016/j.biortech.2021.125306.
[109] S. P. Lohani, S. Wang, W. H. Bergland, S. N. Khanal, R. Bakke, Modeling Temperature Effects in Anaerobic Digestion of Domestic Wastewater, Water-Energy Nexus, Vol. 1, No. 1, 2018, pp. 56-60, https://doi.org/10.1016/j.wen.2018.07.001.
[110] C. Rattanapan, L. Sinchai, T. T. Suksaroj,
D. Kantachote, W. Ounsaneha, Biogas Production by Co-Digestion of Canteen Food Waste and Domestic Wastewater under Organic Loading Rate and Temperature Optimization, Environments, Vol. 6, No. 2, 2019, pp. 16, https://doi.org/10.3390/environments6020016.
[111] L. Sanchez, M. Carrier, J. Cartier, C. Charmette, M. Heran, J. Steyer, G. Lesage, Enhanced Organic Degradation and Biogas Production of Domestic Wastewater at Psychrophilic Temperature Through Submerged Granular Anaerobic Membrane Bioreactor for Energy-Positive Treatment, Bioresource Technology, Vol. 353, 2022,
pp. 127145, https://doi.org/10.1016/j.biortech.2022.127145.
[112] S. Yossan, S. O Thong, P. Prasertsan, Effect of Initial pH, Nutrients and Temperature on Hydrogen Production From Palm Oil Mill Effluent using Thermotolerant Consortia and Corresponding Microbial Communities, International Journal of Hydrogen Energy, Vol. 37, No. 18, 2012,
pp. 13806-13814, https://doi.org/10.1016/j.ijhydene.2012.03.151.
[113] M. M. Arimi, J. Knodel, A. Kiprop, S. S. Namango, Y. Zhang, S. U. Geißen, Strategies for Improvement of Biohydrogen Production from Organic-Rich Wastewater: A Review, Biomass and Bioenergy, Vol. 75, 2015, pp. 101-118, https://doi.org/10.1016/j.biombioe.2015.02.011.
[114] O. Bakari, K. N. Njau, C. Noubactep, Effects of Zero-Valent Iron on Sludge and Methane Production in Anaerobic Digestion of Domestic Wastewater, Case Studies in Chemical and Environmental Engineering, Vol. 8, 2023,
pp. 100377, https://doi.org/10.1016/j.cscee.2023.100377.
[115] K. Fakkaew, C. Polprasert, Air Stripping
Pre-Treatment Process to Enhance Biogas Production in Anaerobic Digestion of Chicken Manure Wastewater, Bioresource Technology Reports, Vol. 14, 2021, pp. 100647, https://doi.org/10.1016/j.biteb.2021.100647.
[116] M. K. Daud, H. Rizvi, M. F. Akram, S. Ali,
M. Rizwan, M. Nafees, Z. S. Jin, Review of Upflow Anaerobic Sludge Blanket Reactor Technology: Effect of Different Parameters and Developments for Domestic Wastewater Treatment, Journal of Chemistry, 2018, pp. 1-13, https://doi.org/10.1155/2018/1596319.
[117] T. S. Nam, L. T. M. Kha, H. V. Khanh, H. V. Thao, N. V. C. Ngan, N. H. Chiem, The Possibility of Producing Biogas from Rice Straw and Water Hyacinth at Different VS’s Concentration in Batch Anaerobic Experiment, Can Tho University Journal of Science, No. 1, 2017, pp. 93-99, https://doi.org/10.22144/ctu.jsi.2017.035 (in Vietnamese).
[118] M. U. Khan, B. K. Ahring, Lignin Degradation under Anaerobic Digestion: Influence of Lignin Modifications - A Review, Biomass and Bioenergy, Vol. 128, 2019, pp. 105325, https://doi.org/10.1016/j.biombioe.2019.105325.
[119] M. Dębowski, S. Szwaja, M. Zieliński,
M. Kisielewska, E. S. Mazanek, The Influence of Anaerobic Digestion Effluents (Ades) used as The Nutrient Sources for Chlorella Sp., Cultivation on Fermentative Biogas Production, Waste and Biomass Valorization, Vol. 8, 2017, pp. 1153-1161.
[120] S. A. Tamar, A. P. M. I. Umer, Stabilization of Sludge in Zakho Municipal Wastewater by Anaerobic Digestion for Biogas Production in Kurdistan Region, Iraq, Science Journal of University of Zakho, Vol. 10, No. 3, 2022, pp. 86-92, https://doi.org/10.25271/sjuoz.2022.10.3.924.
[121] G. Li, J. Zhang, H. Li, R. Hu, X. Yao, Y. Liu,
Y. Zhou, T. Lyu, Towards High-Quality Biodiesel Production from Microalgae Using Original and Anaerobically-Digested Livestock Wastewater, Chemosphere, Vol. 273, 2021, pp. 128578, https://doi.org/10.1016/j.chemosphere.2020.128578.
[122] S. U. Demirer, B. Taskin, G. N. Demirer,
M. Duran, The Effect of Managing Nutrients in the Performance of Anaerobic Digesters of Municipal Wastewater Treatment Plants, Applied Microbiology and Biotechnology, Vol. 97, 2013, pp. 7899-7907.
[123] M. Hjorth, A. M. Nielsen, T. Nyord, M. N. Hansen, P. Nissen, S. G. Sommer, Nutrient Value, Odour Emission and Energy Production of Manure
as Influenced by Anaerobic Digestion and Separation, Agronomy for Sustainable, Vol. 29, 2009, pp. 329-338.
[124] A. H. Slade, G. J. S. Thorn, M. A. Dennis, The Relationship between BOD:N Ratio and Wastewater Treatability in A Nitrogen-Fixing Wastewater Treatment System, Water Science and Technology, Vol. 63, 2011, pp. 627-632, https://doi.org/10.2166/wst.2011.215.
[125] A. Matilainen, M. Vepsäläinen, M. Sillanpää, Natural Organic Matter Removal by Coagulation during Drinking Water Treatment: A Review, Advances in Colloid and Interface Science,
Vol. 159, No. 2, 2010, pp. 189-197, https://doi.org/10.1016/j.cis.2010.06.007.
[126] A. Balakrishnan, S. B. K. Kanchinadham,
C. Kalyanaraman, Nutrient Requirement of Tannery Wastewater Containing Tannins, Environmental Technology & Innovation, Vol. 23, 2023, pp. 101776, https://doi.org/10.1016/j.eti.2021.101776.
[127] T. Jinjaruk, K. Chunkao, K. Pongput,
C. Choeihom, T. Pattamapitoon, W. Wararam,
S. Thaipakdee, M. Srichomphu, P. Maskulrath, HDPE Pipeline Length for Conditioning Anaerobic Process to Decrease BOD in Municipal Wastewater, EnvironmentAsia, Vol. 11, 2018,
No. 1, pp. 31-44, https://doi.org/10.14456/ea.2018.3.
[128] A. Ahmad, Effect of Ozonation on Biodegradation and Methanogenesis of Palm Oil Mill Effluent Treatment for The Production of Biogas, Science and Engineering, Vol. 41, No. 5, 2019, pp. 427-436, https://doi.org/10.1080/01919512.2019.1565987.
[129] G. Wei, T. Wei, Z. Li, C. Wei, Q. Kong, X. Guan, G. Qiu, Y. Hu, C. Wei, S. Zhu, Y. Liu, S. Preis, BOD/COD ratio as A Probing Index in the O/H/O Process for Coking Wastewater Treatment, Chemical Engineering Journal, Vol. 466, 2023,
pp. 143257, https://doi.org/10.1016/j.cej.2023.143257.
[130] S. M. Beyan, S. V. Prabhu, T. T. Sissay, A. A. Getahun, Sugarcane Bagasse Based Activated Carbon Preparation and its Adsorption Efficacy on Removal of BOD and COD from Textile Effluents: RSM Based Modeling, Optimization and Kinetic Aspects, Bioresource Technology Reports,
Vol. 14, 2021, pp. 100664, https://doi.org/10.1016/j.biteb.2021.100664.
[131] Y. Long, Y. Fang, D. Shen, H. Feng, T. Chen, Hydrogen Sulfide (H2S) Emission Control by Aerobic Sulfate Reduction in Landfill, Scientific Reports, Vol. 6, 2016, pp. 38103.
[132] P. G. Ranjith, X. Zhang, Experimental Investigation of Effects of CO2 Injection on Enhanced Methane Recovery in Coal Seam Reservoirs, Journal of CO2 Utilization, Vol. 33, 2019, pp. 394-404, https://doi.org/10.1016/j.jcou.2019.06.019.
[133] N. T. Phu, Research on Anaerobic Biodegradation of Septic Tank Sludge, Residual Activated Sludge and Rich Organic Waste to Generate Methane, Master Thesis, Vietnam National University, Hanoi, 2020 (in Vietnamese).
[134] J. Kim, J. Kim, C. Lee, Anaerobic Co-Digestion of Food Waste, Human Feces, and Toilet Paper: Methane Potential and Synergistic Effect, Fuel, Vol. 248, pp. 189-195, 2019. https://doi.org/10.1016/j.fuel.2019.03.081.
[135] S. S. Tupsakhare, M. J. Castaldi, Efficiency Enhancements in Methane Recovery from Natural Gas Hydrates using Injection of CO2/N2 Gas Mixture Simulating In-Situ Combustion, Applied Energy, Vol. 236, 2019, pp. 825-836, https://doi.org/10.1016/j.apenergy.2018.12.023.
[136] A. Tawfik, M. E. Qelish, Key Factors Affecting on Bio-Hydrogen Production from Co-Digestion of Organic Fraction of Municipal Solid Waste and Kitchen Wastewater, Bioresource Technology, Vol. 168, 2014, pp. 106-111, https://doi.org/10.1016/j.biortech.2014.02.127.
[137] L. Wang, L. Singh, H. Liu, Revealing The Impact of Hydrogen Productionconsumption Loop Against Efficient Hydrogen Recovery in Single Chamber Microbial Electrolysis Cells (MECs), International Journal of Hydrogen Energy, Vol. 43, No. 29, 2018, pp. 13064-13071, https://doi.org/10.1016/j.ijhydene.2018.05.081.
[138] G. Moral, R. O. Imedio, D. G. Alfredo Ortiz,
I. Ortiz, Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives, Industrial & Engineering Chemistry Research,
Vol. 61, No. 18, 2022, pp. 6065-6234, https://doi.org/10.1021/acs.iecr.1c04668.
[139] R. Abejón, A. F. Ríos, A. D. Ramos, J. Laso,
I. R. Salmón, M. Yáñez, A. Ortiz, D. Gorri,
N. Donzel, D. Jones, A. Irabien, I. Ortiz, R. Aldaco,
M. Margallo, Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach, Applied Science,
Vol. 10, No. 21, 2020, pp. 7461, https://doi.org/10.3390/app10217461.
[140] S. Cho, M. Lee, W. Lee, Y. Ahn, Improved Hydrogen Recovery in Microbial Electrolysis Cells Using Intermittent Energy Input, International Journal of Hydrogen Energy, Vol. 44, No. 4, 2018, pp. 1-5, https://doi.org/10.1016/j.ijhydene.2018.07.025.
[141] D. Lianga, L. Zhang, W. Hea, C. Lia, J. Liua,
S. Liuc, H. S. Lee, Y. Feng, Efficient Hydrogen Recovery with Cop-NF as Cathode in Microbial Electrolysis Cells, Applied Energy, Vol. 264, 2020, pp. 114700, https://doi.org/10.1016/j.apenergy.2020.114700.