Nguyen Tuan Anh, Nguyen Tien Phong, Tran Thi Dieu Quynh, Nguyen Thi Thu Ha, Nguyen Vinh Thanh, Pham Viet Hung, Le Duc Minh

Main Article Content

Abstract

The Red-shanked Douc (Pygathrix nemaeus) is an endangered primate found only in a small region of Indochina, and its populations is believed to have declined at most known sites in recent decades. While the most serious threats to the Doucs to date are illegal hunting and habitat destruction, the potential impacts of climate change on this species are still poorly understood. In this study, we employ MaxEnt, a widely used species distribution modeling method, to predict climatically suitable habitat for P. nemaeus at present, and then project the optimal model using a range of future climate change scenarios to understand the possible shifts in response to climate change over the entire range of the Red-shanked Douc. The model results in most climate change scenarios and timeframes show that P. nemaeus may experience significant habitat loss and fragmentation within its current range as a consequence of suitable habitat contraction. The climatically stable refugia for the Red-shanked Douc are predicted to consist of protected areas along the Annamite Range that runs between Vietnam and Laos, and we suggest this region to be the focus of the Doucs’ conservation effort in the future. To mitigate climate-related risks for the Red-shanked Douc, future cooperation initiatives between Vietnam and Laos’ governmental institutions and conservation organizations will be crucial in conserving the remaining habitat of this endangered primate.


 

Keywords: MaxEnt, Red-shanked Douc, Refugia, Species Distribution Modeling, Transboundary conservation.

References

[1] C. N. Z. Coudrat, L. K. Quyet, H. Duc,
P. Phiaphalath, B. M. Rawson, T. Nadler,
L. Ulibarri, J. W. Duckworth, Pygathrix Nemaeus, the IUCN Red List of Threatened Species, 2020.
[2] C. N. Z. Coudrat, J. W. Duckworth, R. J. Timmins, Distribution and Conservation Status of the Red-Shanked Douc (Pygathrix Nemaeus) in Lao PDR: An update, Am. J. Primatol, Vol. 74, Iss. 10, 2012,
pp. 874-889, https://doi.org/10.1002/ajp.22027.
[3] B. Rawson, C. Roos, A New Primate Record for Cambodia: Pygathrix Nemaeus, Cambodian J. Nat. Hist, Vol. 1, 2008, pp. 7-11.
[4] T. Nadler, F. Momberg, N. X. Dang, N. Lormee, Vietnam Primate Conservation Status Review 2002-Part 2: Leaf Monkeys, Fauna & Flora International, Vietnam Programme and Frankfurt Zoological Society, Hanoi, 2003.
[5] A. Mcewan, T. Nadler, O. Nevin, The Illegal Trade of the Douc Langurs (Pygathrix sp.) in Vietnam – January 2010 to December 2020, Vietnamese J. Primatol, Vol. 3, 2021, pp. 157-170.
[6] H. H. Covert, H. M. Duc, L. K. Quyet, A. Ang,
A. H. Levine, T.V. Bang, Primates of Vietnam: Conservation in A Rapidly Developing Country, Anthropol, Now, Vol. 9, 2017, pp. 27-44, https://doi.org/10.1080/19428200.2017.1337353.
[7] K. Manish, Y. Telwala, D. C. Nautiyal, M. K. Pandit, Modelling the Impacts of Future Climate Change on Plant Communities in the Himalaya: A Case Study from Eastern Himalaya, India, Model, Earth Syst. Environ, Vol. 2, 2016, pp. 1-12, https://doi.org/10.1007/s40808-016-0163-1.
[8] D. Alarcón, L. A. Cavieres, Relationships Between Ecological Niche and Expected Shifts in Elevation and Latitude Due to Climate Change In South American Temperate Forest Plants, J. Biogeogr, Vol. 45, 2018, pp. 2272-2287, https://doi.org/10.1111/jbi.13377.
[9] H. T. Dinh, A. T. Nguyen, M. D. Le, X. Li,
N. T. H. Cao, M. E. Blair, Assessment of Climate Change Impacts on One of the Rarest Apes on Earth, the Cao Vit Gibbon Nomascus Nasutus, Front. Biogeogr, Vol. 14, No. 2022, pp. 1-11, https://doi.org/10.21425/F5FBG53320.
[10] T. V. Nguyen, H. Man, A. Nguyen, An assessment of Potential Distribution and Climate Change Impacts On A Critically Endangered Primate, The Delacour’s Langur, Raffles Bull. Zool, Vol. 70, 2022, pp. 30-38, https://doi.org/10.26107/RBZ-2022-0003.
[11] S. J. Phillips, R. P. Anderson, M. Dudík, R. E. Schapire, M. E. Blair, Opening the Black Box: An Open-source Release of MaxEnt, Ecography (Cop.), Vol. 40, 2017, pp. 887-893, https://doi.org/10.1111/ecog.03049.
[12] T. A. Nguyen, C. T. H. Nhung, P. J. Galante,
M. D. Le, Rapid Decline and Fragmentation of the Distribution of an Enigmatic Small Carnivore, the Owston’s Civet, in Response to Future Climate Change, Front. Biogeogr, Vol. 14, 2022, pp. 1-12, https://doi.org/10.21425/F5FBG53201.
[13] A. D. Chapman, Principles and Methods of Data Cleaning - Primary Species And Species-Occurrence Data, Global Biodiversity Information Facility, 2005.
[14] A. T. Nguyen, H. T. Dinh, M. Le, N. M. Ha, Status of A Second Viable Population of the Critically Endangered Delacour’s Langur in Vietnam, Oryx, Vol. 56, Iss. 3, 2022, pp. 439-441, https://doi.org/10.1017/S0030605321000326.
[15] M. E. A. Lammens, R. A. Boria, A. Radosavljevic, B. Vilela, R. P. Anderson, spThin: an R Package for Spatial Thinning of Species Occurrence Records for use in Ecological Niche Models, Ecography (Cop.), Vol. 38, Iss. 5, 2015, pp. 541-545, https://doi.org/10.1111/ecog.01132.
[16] R, C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2023.
[17] R. G. Pearson, C. J. Raxworthy, M. Nakamura,
A. T. Peterson, Predicting Species Distributions from Small Numbers of Occurrence Records: A Test Case Using Cryptic Geckos in Madagascar,
J. Biogeogr, Vol. 34, Iss. 1, 2007, pp. 102-117, https://doi.org/10.1111/j.1365-2699.2006.01594.x.
[18] S. E. Fick, R. J Hijmans, WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas, Int. J. Climatol, Vol. 37, Iss. 12, 2017, pp. 4302-4315, https://doi.org/10.1002/joc.5086.
[19] R. P. Anderson, A. Raza, The Effect of the Extent of the Study Region on GIS Models of Species Geographic Distributions and Estimates of Niche Evolution: Preliminary Tests with Montane Rodents (Genus Nephelomys) in Venezuela,
J. Biogeogr, Vol. 37, 2010, pp. 1378-1393, https://doi.org/10.1111/j.13652699.2010.02290.x.
[20] J. Elith, S. J. Phillips, T. Hastie, M. Dudík,
Y. E. Chee, C. J. Yates, A Statistical Explanation of Maxent for Ecologists, Divers. Distrib, Vol. 17, 2011, Iss. 1, pp. 43-57, https://doi.org/10.1111/j.14724642.2010.00725.x.
[21] J. M. Kass, R. Muscarella, P. J. Galante, C. L. Bohl, G. E. P. Buitrago, R. A. Boria, M. S. Guardia, R. P. Anderson, ENMeval 2.0: Redesigned for Customizable and Reproducible Modeling of Species’ Niches and Distributions, Methods Ecol. Evol, Vol. 12, Iss. 9, 2021, pp. 1602-1608, https://doi.org/10.1111/2041-210X.13628.
[22] D. L. Warren, S. N. Seifert, Ecological Niche Modeling in Maxent: the Importance of Model Complexity and the Performance of Model Selection Criteria, Ecol. Appl, Vol. 21, Iss. 2, 2011,
pp. 335-342, https://doi.org/10.1890/10-1171.1.
[23] L. Brunner, A. Pendergrass, F. Lehner,
A. Merrifield, R. Lorenz, R. Knutti, Reduced Global Warming from CMIP6 Projections when Weighting Models by Performance and Independence, Earth Syst. Dyn. Discuss, 2020,
pp. 1-23, https://doi.org/10.5194/esd-2020-23.
[24] D. Bi, M. Dix, S. Marsland, S. O’farrell,
A. Sullivan, R. Bodman, R. Law, I. Harman,
J. Srbinovsky, H. A. Rashid, P. Dobrohotoff,
C. Mackallah, H. Yan, A. Hirst, A. Savita, F. B. Dias, M. Woodhouse, R. Fiedler, A. Heerdegen, Configuration and Spin-up of ACCESS-CM2, the New Generation Australian Community Climate and Earth System Simulator Coupled Model,
J. South, Hemisph. Earth Syst. Sci, Vol. 70, No. 1, 2020, pp. 225-251, https://doi.org/10.1071/ES19040.
[25] H. Tatebe, T. Ogura, T. Nitta, Y. Komuro,
K. Ogochi, T. Takemura, K. Sudo, M. Sekiguchi, M. Abe, F. Saito, M. Chikira, S. Watanabe,
M. Mori, N. Hirota, Y. Kawatani, T. Mochizuki,
K. Yoshimura, K. Takata, R. O’Ishi, D. Yamazaki, T. Suzuki, M. Kurogi, T. Kataoka, M. Watanabe, M. Kimoto, Description and Basic Evaluation of Simulated Mean State, Internal Variability, and Climate Sensitivity in MIROC6, Geosci, Model Dev, Vol. 12, Iss. 7, 2019, pp. 2727-2765, https://doi.org/10.5194/gmd-12-2727-2019.
[26] R. Séférian, P. Nabat, M. Michou, D. S. Martin,
A. Voldoire, J. Colin, B. Decharme, C. Delire,
S. Berthet, M. Chevallier, S. Sénési,
L. Franchisteguy, J. Vial, M. Mallet, E. Joetzjer,
O. Geoffroy, J. F. Guérémy, M. P. Moine,
R. Msadek, A. Ribes, M. Rocher, R. Roehrig,
D. S. Mélia, E. Sanchez, L. Terray, S. Valcke, R. Waldman, O. Aumont, L. Bopp, J. Deshayes,
C. Éthé, G. Madec, Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate, J. Adv. Model. Earth Syst, Vol. 11,
Iss. 12, 2019, pp. 4182-4227, https://doi.org/10.1029/2019MS001791.
[27] M. Kelley, G. A. Schmidt, L. S. Nazarenko, S. E. Bauer, R. Ruedy, G. L. Russell, A. S. Ackerman,
I. Aleinov, M. Bauer, R. Bleck, V. Canuto,
G. Cesana, Y. Cheng, T. L. Clune, B. I. Cook,
C. A. Cruz, A. D. D. Genio, G. S. Elsaesser,
G. Faluvegi, N. Y. Kiang, D. Kim, A. A. Lacis,
A. Leboissetier, A. N. L. Grande, K. K. Lo,
J. Marshall, E. E. Matthews, S. M. Dermid,
K. Mezuman, R. L. Miller, L. T. Murray, V. Oinas, C. Orbe, C. P. G. Pando, J. P. Perlwitz, M. J. Puma, D. Rind, A. Romanou, D. T. Shindell, S. Sun,
N. Tausnev, K. Tsigaridis, G. Tselioudis, E. Weng, J. Wu, M.S. Yao, GISS-E2.1: Configurations and Climatology, J. Adv. Model. Earth Syst, Vol. 12 2020, pp. 1-38, https://doi.org/10.1029/2019MS002025.
[28] K. Riahi et al., The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview, Glob. Environ. Chang, Vol. 42, 2017, pp. 153-168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.
[29] T. Haus, M. Vogt, B. Forster, N. T. Vu, T. Ziegler, Distribution and Population Densities of Diurnal Primates in the Karst Forests of Phong Nha - Ke Bang National Park, Quang Binh Province, Central Vietnam, Int. J. Primatol, Vol. 30, 2009, pp. 301-312, https://doi.org/10.1007/s10764-009-9343-4.
[30] C. N. Z. Coudrat, C. Nanthavong, K. A. I. Nekaris, Conservation of the Red-shanked Douc Pygathrix Nemaeus in Lao People’s Democratic Republic: Density Estimates Based on Distance Sampling and Habitat Suitability Modelling, Oryx, Vol. 48, Iss. 4, 2014, pp. 540-547, https://doi.org/10.1017/S0030605313000124.
[31] P. Phiapalath, C. Borries, P. Suwanwaree, Seasonality of Group Size, Feeding, and Breeding in Wild Red-Shanked Douc Langurs (Lao PDR), Am. J. Primatol, Vol 73, Iss. 11, 2011, pp. 1134-114, https://doi.org/10.1002/ajp.20980.
[32] A. T. Nguyen, T. V. Nguyen, R. Timmins,
P. M. Gowan, T. V. Hoang, M. D. Le, Efficacy of Camera Traps in Detecting Primates in Hue Saola Nature Reserve, Primates, Vol. 61, No. 5, 2020,
pp. 697-705, https://doi.org/10.1007/s10329-020-00823-4.
[33] A. Tilker, A Survey of Eastern Areas of Xe Sap National Protected Area, Lao PDR for Saola and Other Large Ungulates, WWF Greater Mekong, 2014.
[34] USAID/Vietnam, Assessment of the Biodiversity of Song Thanh Nature Reserve, Quang Nam, Vietnam, USAID/Vietnam, 2019.
[35] L. K. Lippold, V. N. Thanh, T. D. Nghia, N. A. Duc, Feeding Ecology of Red-Shanked Douc Langurs at Son Tra Nature Reserve, Da Nang, Vietnam, Primate Conserv, 2022, pp. 1-14.
[36] B. V. Tuan, C. L. Tan, N. A. Tam, H. Q. Huy, T. H. Vy, V. N. Thinh, J. A. Phillips, A large Population of the Northern Yellow-Cheeked Gibbon (Nomascus Annamensis) and New Records on the Primate Diversity in Ba Na-Nui Chua Nature Reserve, Danang, Vietnam, Vietnamese J. Primatol, Vol. 3, 2019, pp, 27-40.
[37] N. T. Anh, L. D. Minh, P. V. Hung, V. T. Duyen, Modeling the Red-shanked Douc (Pygathrix nemaeus) Distribution in Vietnam using MaxEnt, VNU J. Sci. Earth Environ. Sci, Vol. 35, No. 3, 2019, pp. 61-71, https://doi.org/10.25073/2588-1094/vnuees.4390.