Nguyen Thi Mai, Dang Van Thanh, Nguyen Manh Khai, Tran Thi Minh Hang

Main Article Content

Abstract

This research evaluated the effectiveness of sulfamethoxazole (SMX) antibiotic degradation in aqueous solution using red mud and rice husk biochar (RMC) as catalytic material for ultrasound-supported degradation process. Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Energy-dispersive X-ray spectroscopy (EDX) were applied to study the characteristics of the catalytic material. The results demonstrated that the main components of RMC catalytic material are C, O, Si, and Fe elements with high weight percentage of 26.56%, 50.89%, 1.86% and 10.26%, respectively, and with high crystallized mix ratio. These are beneficial for SMX degradation reactions in water under the effect of ultrasound irradiation. The SMX degradation products were analyzed using High-performance liquid chromatography (HPLC). The effect of pH, contact time, initial concentration, and catalyst weight on degradation effectiveness were also investigated. The highest degradation efficiency of 75% at the treated rate of 15 mg SMX/g RMC was observed at pH = 3, contact time of 180 minutes, initial concentration of 20 mg SMX/L. This suggested a new solution to utilize the waste resources for waste treatment.


 

Keywords: Red mud, rice husk biochar, sulfamethoxazole, Fe, ultrasound.

References

[1] S. Larcher, V. Yargeau, Biodegradation of Sulfamethoxazole: Current Knowledge And Perspectives, Applied Microbiology and Biotechnology, No. 96, 2012, pp. 309-318, https://doi.org/10.1007/s00253-012-4326-3.
[2] H. I. Park, J. S. Kim, D. K. Kim, Y.J. Choi, D. Pak, Nitrate-Reducing Bacterial Community in a Biofilm-Electrode Reactor. Enzyme and Microbial Technology, Vol. 39, No. 3, 2006, pp. 453-458, https://doi.org/10.1016%2Fj.isci.2021.102682L.
[3] L. Szpyrkowicz, S. Daniele, M. Radaelli,
S. Specchia, Removal of NO3− from Water by Electrochemical Reduction in Different Reactor Configurations, Applied Catalysis B: Environmental, Vol. 66, Iss. 1-2, 2006, pp. 40-50, https://doi.org/10.1016/j.apcatb.2006.02.020.
[4] S. Zhang, H. L Song, X. L. Yang, K.Y. Yang,
X. Y. Wang, Effect of Electrical Stimulation on the Fate of Sulfamethoxazole and Tetracycline with their Corresponding Resistance Genes in Three-Dimensional Biofilm-Electrode Reactors, Chemosphere, Vol. 164, 2016, pp. 113-119,
https:// 10.1016/j.chemosphere.2016.08.076.
[5] P. Kovalakova, L. Cizmas, T. J. McDonald,
B. Marsalek, M. Feng, V. K. Sharma, Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review, Chemosphere, Vol. 251, 2020, pp. 126351,
https://doi.org/10.1016/j.chemosphere.2020.126351.
[6] O. A. Ajala, S. O. Akinnawo, A. Bamisaye, D. T. Adedipe, M. O. Adesina, O. A. Okon-Akan, T. A. Adebusuyi, A. T. Ojedokun, K. A. Adegoke, O. S. Bello, Adsorptive Removal of Antibiotic Pollutants from Wastewater Using Biomass/Biochar-Based Adsorbents. RSC advances, Vol. 13, Iss. 7, 2023, pp. 4678-4712, https://doi.org/10.1039/D2RA06436G.
[7] F. V. D. Andrade, R. Augusti, G. M. D. Lima, Ultrasound for the Remediation of Contaminated Waters with Persistent Organic Pollutants: A Short Review, Ultrason Sonochem, Vol. 78, 2021,
pp. 105719, https://doi.org/10.1016/j.ultsonch.2021.105719.
[8] S. Yuan, C. Li, Y. Zhang, H. Yu, Y. Xie, Y. Guo, W. Yao, Ultrasound as an Emerging Technology for the Elimination of Chemical Contaminants in Food: A Review, Trends in Food Science & Technology, Vol. 109, 2021, pp. 374-385, https://doi.org/10.1016/j.tifs.2021.01.048.
[9] G. Musielak, D. Mierzwa, J. Kroehnke, Food Drying Enhancement by Ultrasound - A Review, Trends in Food Science & Technology, Vol. 56, 2016, pp. 126-141, https://doi.org/10.1016/j.tifs.2016.08.003.
[10] Q. Yu, L. Fan, J. Li, A Novel Process for Asparagus Polyphenols Utilization by Ultrasound Assisted Adsorption and Desorption Using Resins, Ultrasonics Sonochemistry, Vol. 63, 2020,
pp. 104920, https://doi.org/10.1016/j.ultsonch.2019.104920 .
[11] T. Liao, Y. Xi, L. Zhang , J. Li, K. Cui, Removal of Toxic Arsenic (As (Ⅲ)) from Industrial Wastewater by Ultrasonic Enhanced Zero-Valent Lead Combined With CuSO4, Journal of Hazardous Materials, Vol. 408, 2021, pp. 124464, https://doi.org/10.1016/j.jhazmat.2020.124464.
[12] Y. Lv, M. Sui, X. Lv, J. Xie, Piezoelectric Catalytic Performance of BaTiO3 for Sulfamethoxazole Degradation, Environmental Science: Water Research & Technology, Vol. 8, Iss. 12, 2022,
pp. 3007-3018, https://doi.org/10.1039/D2EW00314G.
[13] P. A. Mangrulkar, S. P. Kamble, M. M. Joshi, J. S. Meshram, N. K. Labhsetwar, S. S. Rayalu, Photocatalytic Degradation of Phenolics by N-Doped Mesoporous Titania under Solar Radiation, International Journal of Photoenergy, Vol. 2012, 2012, https://doi.org/10.1155/2012/780562.
[14] E. Hapeshi, A. Achilleos, A. Papaioannou,
L. Valanidou, N. P. Xekoukoulotakis,
D. Mantzavinos, D. Fatta-Kassinos, Sonochemical Degradation of Ofloxacin in Aqueous Solutions,
J. Water Science & Technology, Vol. 61, Iss. 12, 2010, pp. 3141-3146, https://doi.org/10.2166/wst.2010.921.
[15] P. V. Guzman, J. S. Agredo, A. L. G. Aguirre,
O. F. Acosta, C. Petrier, R. A. T. Palma, Enhancement and Inhibition Effects of Water Matrices During the Sonochemical Degradation of the Antibiotic Dicloxacillin, Ultrasonics Sonochemistry, Vol. 22, 2015, pp. 211-219, https://doi.org/10.1016/j.ultsonch.2014.07.006.
[16] A. Almasi, A. Dargahi, M. Mohamadi, H. Biglari, F. Amirian, M. Raei, Removal of Penicillin G by Combination of Sonolysis and Photocatalytic (Sonophotocatalytic) Process from Aqueous Solution: Process Optimization Using Rsm (Response Surface Methodology), Electron Physician, Vol. 8, Iss. 9, 2016, pp. 2878-2887, https://doi.org/10.19082/xx.
[17] E. A. S. Galvis, D. M. Rodríguez, L. I. Pineda,
M. Ibáñez, F. Hernández, A. M. Lasso, R. A. T. Palma, Sonochemical Degradation of Antibiotics from Representative Classes-Considerations on Structural Effects, Initial Transformation Products, Antimicrobial Activity and Matrix, Ultrasonics Sonochemistry, Vol. 50, 2019, pp. 157-165, https://doi.org/10.1016/j.ultsonch.2018.09.012 .
[18] T. Q. Toan, N. T. Mai, H. M. Trang, P. V. Hao,
D. V. Thanh, Ultrasonic-Assisted Synthesis of Magnetic Recyclable Fe3O4/Rice Husk Biochar Based Photocatalysts for Ciprofloxacin Photodegradation in Aqueous Solution. RSC Advances, Vol. 13, No. 16, 2023, pp. 11171-11181, https://doi.org/10.1039/D3RA00178D.
[19] E. Calcio Gaudino, E. Canova, P. Liu, Z. Wu,
G. Cravotto, Degradation of Antibiotics in Wastewater: New Advances in Cavitational Treatments. Molecules, Vol. 26, No. 617, 2021, https://doi.org/10.3390/molecules26030617.
[20] A. Bembibre, M. Benamara, M. Hjiri, E. Gómez, H. R. Alamri, R. Dhahri, A. Serra, Visible-Light Driven Sonophotocatalytic Removal of Tetracycline Using Ca-Doped ZnO Nanoparticles. Chemical Engineering Journal, Vol. 427, 2022,
pp. 132006, https://doi.org/10.1016/j.cej.2021.132006.
[21] O. S. Ayanda, S. M. Nelana, L. F. Petrik, E. B. Naidoo, Nano-TiO2, Ultrasound and Sequential Nano-TiO2/Ultrasonic Degradation of N-Acetyl-Para-Aminophenol from Aqueous Solution. Journal of Water and Health, Vol. 15, No. 6, 2017, pp. 1015-1027, https://doi.org/10.2166/wh.2017.145.
[22] K. Khan, F. Khitab, J. Shah, M. R. Jan, Ultrasound Assisted Photocatalytic Degradation of Isoproturon and Triasulfuron Herbicides Using Visible Light Driven Impregnated Zinc Oxide Catalysts. Sustainable Environment Research,
Vol. 33, No. 24, 2023, https://doi.org/10.1186/s42834-023-00184-9.
[23] J. Ba, G. Wei, L. Zhang, Q. Li, Z. Li, J. Chen, Preparation and Application of a New Fenton-Like Catalyst from Red Mud for Degradation of Sulfamethoxazole. Environmental Technology, Vol. 43, No. 19, 2022, pp. 2922-2933, https://doi.org/10.1080/09593330.2021.1909659
[24] T. Q. Toan, T. K. Ngan, D. T. Huong, P. A. Le, N. T. Thuy, N. N. Huy, D. V. Thanh, N. M. Khai, N. T. Mai, Green and Facile Synthesis of Porous SiO2@ C Adsorbents from Rice Husk: Preparation, Characterization and their Application in Removal of Reactive Red 120 in Aqueous Solution. ACS Omega, Vol. 8, No. 11, 2023, pp. 9904-9918, https://doi.org/10.1021/acsomega.2c07034.
[25] N. T. Mai, N. M. Khai, P. T. Oanh, D. V. Thanh, T. Q. Quoc, Adsorption of Methylene Blue in Aqueous Solution by Adsorbent Fabricating through Activation of Red Mud with Rice Husk Char, Vietnam Journal of Catalysis and Adsorption, Vol. 10, No. 1S, 2021, pp. 287-292, https://doi.org/10.51316/jca.2021.148.
[26] I. M. Minisy, N. A. Salahuddin, M. M. Ayad, Adsorption of Methylene Blue onto Chitosan–Montmorillonite/Polyaniline of Nanocomposite, Applied Clay Science, Vol. 203, 2021, pp. 105993, https://doi.org/10.1016/j.clay.2021.105993.
[27] A. Ioannidi, P. Oulego, S. Collado, A. Petala,
V. Arniella, Z. Frontistis, G.N. Angelopoulos,
M. Diaz, D. Mantzavinos, Persulfate Activation by Modified Red Mud for The Oxidation of Antibiotic Sulfamethoxazole in Water, Journal of Environmental Management, Vol. 270, 2020,
pp. 110820, https://doi.org/10.1016/j.jenvman.2020.110820.
[28] D. Avisar, O. Primor, I. Gozlan, H. Mamane, Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay. Journal of Water, Air, & Soil Pollution, Vol. 209, 2010, pp. 439-450,
https://doi.org/10.1007/s11270-009-0212-8.
[29] F. Mahmoudi, C. M. Park, J. J. Shim, Ultrasound-Assisted Heterogeneous Fenton-Like Process for Efficient Degradation of Tetracycline Over SmFeO3/Ti3C2Tx. Catalyst, Vol. 50, 2022,
pp. 103235, https://doi.org/10.1016/j.jwpe.2022.103235.