Le Linh Thy, Nguyen Huu Viet, Bui Xuan Thanh

Main Article Content

Abstract

Conventional wastewater treatment approaches such as activated sludge processes often rely on energy-intensive and resource-demanding processes. However, emerging technologies offer promising solutions to improve the sustainability of wastewater management. This review examines three innovative technologies, including anaerobic membrane bioreactor (AnMBR), partial nitritation/anammox (PN/A), and microalgae-based processes, and their potential advantages over traditional methods. AnMBR combine membrane filtration with anaerobic biological treatment, enabling high-quality effluent, reduced sludge production, and a compact footprint. The PN/A is a two-step biological process that can achieve efficient nitrogen removal with lower aeration requirements. Microalgae-based systems leverage photosynthetic organisms to remove nutrients and organic matter while generating biomass for potential resource recovery. Each alternative technology has strengths and limitations that must be carefully evaluated based on the site-specific factors, such as wastewater characteristics, treatment objectives, and local conditions. Continued research and technological development is necessary to address the remaining technical and economic barriers impeding their wider adoption. Integrating multiple alternative technologies in a treatment train can help optimize overall performance by leveraging the complementary advantages of different processes. This holistic approach can advance the sustainable wastewater management, promoting resource efficiency, energy savings, and environmental protection.

Keywords: Anaerobic membrane bioreactor; Microalgae-based processes; Partial nitritation/anammox; Sustainability development; Wastewater treatment.

References

[1] H. Guven, R. K. Dereli, H. Ozgun, M. E. Ersahin,
I. Ozturk, Towards Sustainable and Energy Efficient Municipal Wastewater Treatment by Up-Concentration of Organics, Progress in Energy and Combustion Science, Vol. 70, 2019, pp. 145-168, https://doi.org/10.1016/j.pecs.2018.10.002.
[2] S. D. Fraia, N. Massarotti, L. Vanoli, A Novel Energy Assessment of Urban Wastewater Treatment Plants, Energy Conversion and Management, Vol. 163, 2018, pp. 304-313, https://doi.org/10.1016/j.enconman.2018.02.058.
[3] L. Castellet, M. M. Senante, Efficiency Assessment of Wastewater Treatment Plants: A Data Envelopment Analysis Approach Integrating Technical, Economic, and Environmental Issues, Journal of Environmental Management, Vol. 167, 2016, pp. 160-166, https://doi.org/10.1016/j.jenvman.2015.11.037.
[4] A. Abbew, A. A. Amadu, S. Qiu, P. Champagne,
I. Adebayo, P.O. Anifowose, S. Ge, Understanding the Influence of Free Nitrous Acid on Microalgal-Bacterial Consortium in Wastewater Treatment: A Critical Review, Bioresource Technology,
Vol. 363, 2022, pp. 127916, https://doi.org/10.1016/j.biortech.2022.127916.
[5] Y. Gu, Y. Li, F. Yuan, Q. Yang, Optimization and Control Strategies of Aeration in WWTPs: A Review, Journal of Cleaner Production, Vol. 418, 2023, pp. 138008, https://doi.org/10.1016/j.jclepro.2023.138008.
[6] B. Wu, X. Dai, X. Chai, Critical Review on Dewatering of Sewage Sludge: Influential Mechanism, Conditioning Technologies and Implications to Sludge Re-Utilizations, Water Research, Vol. 180, 2020, pp. 115912, https://doi.org/10.1016/j.watres.2020.115912.
[7] M. A. Musa, S. Idrus, H. C. Man, N. N. N. Daud, Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements, Energies, Vol. 11, 2018, pp. 1675, https://doi.org/10.3390/en11071675.
[8] Z. K. Lim, T. Liu, M. Zheng, M. Rattier, J. Keller, Z. J. Yuan, J. Guo, S. Hu, Membrane Reciprocation As Energy-Efficient Fouling Control with High Biogas Recovery in A Pilot-Scale Anaerobic Membrane Bioreactor, Resources, Conservation and Recycling, Vol. 190, 2023, pp. 106849, https://doi.org/10.1016/j.resconrec.2022.106849.
[9] Y. Ye, H. H. Ngo, W. Guo, S. W. Chang, D. D. Nguyen, S. Varjani, Q. Liu, X. T. Bui, N. B. Hoang, Bio-membrane Integrated Systems for Nitrogen Recovery from Wastewater in Circular Bioeconomy, Chemosphere, Vol. 289, 2022,
pp. 133175, https://doi.org/10.1016/j.chemosphere.2021.133175.
[10] Y. Huang, P. Jeffrey, M. Pidou, Municipal Wastewater Treatment with Anaerobic Membrane Bioreactors for Non-Potable Reuse: A Review, Critical Reviews in Environmental Science and Technology, Vol. 54, 2024, pp. 817-839, https://doi.org/10.1080/10643389.2023.2279886.
[11] A. Aslam, S. J. Khan, H. M. A. Shahzad, Anaerobic Membrane Bioreactors (Anmbrs) for Municipal Wastewater Treatment-Potential Benefits, Constraints, and Future Perspectives: An Updated Review, Science of the Total Environment,
Vol. 802, 2022, pp. 149612, https://doi.org/10.1016/j.scitotenv.2021.149612.
[12] Á. Robles, A. J. Benítez, J. B. Giménez, F. Durán, J. Ribes, J. Serralta, J. Ferrer, F. Rogalla, A. Seco, A Semi-Industrial Scale Anmbr for Municipal Wastewater Treatment at Ambient Temperature: Performance of the Biological Process, Water Research, Vol. 215, 2022, pp. 118249, https://doi.org/10.1016/j.watres.2022.118249.
[13] Z. Kong, J. Wu, C. Rong, T. Wang, L. Li, Z. Luo, J. Ji, T. Hanaoka, S. Sakemi, M. Ito, S. Kobayashi, M. Kobayashi, Y. Qin, Y. Li, Large Pilot-Scale Submerged Anaerobic Membrane Bioreactor for the Treatment of Municipal Wastewater and Biogas Production at 25 °C, Bioresource Technology, Vol. 319, 2021, pp. 124123, https://doi.org/10.1016/j.biortech.2020.124123.
[14] B. Sawadogo, Y. Konaté, A. W. Nouhou Moussa, G. Lesage, F. Zaviska, M. Heran, H. Karambiri, Anaerobic Membrane Bioreactor Coupled with Nanofiltration Applied to the Treatment of Beverage Industry Wastewater Under Soudano-Sahelian Climatic Conditions, Journal of Membrane Science and Research, Vol. 8, 2022, https://doi.org/10.22079/jmsr.2022.545078.1521.
[15] M. Turker, R. K. Dereli, Long Term Performance of A Pilot Scale Anaerobic Membrane Bioreactor Treating Beet Molasses Based Industrial Wastewater. Journal of Environmental Management, Vol. 278, 2021, pp. 111403, https://doi.org/10.1016/j.jenvman.2020.111403.
[16] H. E. A. Hazmi, G. K. Hassan, M. Maktabifard,
D. Grubba, J. Majtacz, J. Mąkinia, Integrating Conventional Nitrogen Removal with Anammox in Wastewater Treatment Systems: Microbial Metabolism, Sustainability and Challenges. Environmental Research, Vol. 215, 2022,
pp. 114432, https://doi.org/10.1016/j.envres.2022.114432,
[17] L. T. Le, B. T. Dang, X. T. Bui, D. Jahng, Anammox-An Energy-Efficient Nitrogen Removal Process In Wastewater Treatment, in: X. T. Bui,
D. D. Nguyen, P. Ashok (Eds.), Current Developments in Biotechnology and Bioengineering, 2021, pp. 503-527, https://doi.org/10.1016/B978-0-323-99874-1.00004-X.
[18] J. Li, J. Li, Y. Peng, S. Wang, L. Zhang, S. Yang, S. Li, Insight Into the Impacts of Organics on Anammox and Their Potential Linking to System Performance of Sewage Partial Nitrification-Anammox (PN/A): A Critical Review, Bioresource Technology, Vol. 300, 2020, pp. 122655, https://doi.org/10.1016/j.biortech.2019.122655.
[19] L. T. Le, L. D. Nghiem, X. T. Bui, D. Jahng, Improve Nitrogen Removal of the Biofilm Single-Stage PN/A Process by Optimizing the Intermittent Aeration Strategy, Environmental Technology & Innovation, Vol. 30, 2023, pp. 103078, https://doi.org/10.1016/j.eti.2023.103078.
[20] S. Mishra, V. Singh, L. Cheng, A. Hussain,
B. Ormeci, Nitrogen Removal from Wastewater: A Comprehensive Review of Biological Nitrogen Removal Processes, Critical Operation Parameters and Bioreactor Design, Journal of Environmental Chemical Engineering, Vol. 10, 2022, pp. 107387, https://doi.org/10.1016/j.jece.2022.107387.
[21] M. Laureni, D. G. I. Weissbrodt, O. S. Robin,
J. L. Nielsen, E. Morgenroth, A. Joss, Activity and Growth of Anammox Biomass on Aerobically Pre-treated Municipal Wastewater, Water Research, Vol. 80, 2015, pp. 325-336, https://doi.org/10.1016/j.watres.2015.04.026.
[22] W. Wang, D. Li, S. Li, H. Zeng, J. Zhang, Research on Partial Nitritation and Anaerobic Ammonium Oxidation Process, IntechOpen, 2024, https://doi.org/10.5772/intechopen.112708.
[23] Z. Kong, Y. Xue, Y. Zhang, T. Hao, H. Chen,
J. Sun, Y. Pan, D. Li, Y. Li, Y. Huang, Insights Into the Carbon Neutrality for the Treatment Process Engineering of Municipal Wastewater by Anaerobic Membrane Bioreactor Integrated with Partial Nitritation-Anammox: CO2 Reduction and Energy Recovery, Journal of Water Process Engineering, Vol. 49, 2022, pp. 102996, https://doi.org/10.1016/j.jwpe.2022.102996.
[24] W. Liu, H. Zhou, W. Zhao, C. Wang, Q. Wang,
J. Wang, P. Wu, Y. Shen, X. Ji, D. Yang, Rapid Initiation of A Single-Stage Partial Nitritation-Anammox Process Treating Low-Strength Ammonia Wastewater: Novel Insights Into Biofilm Development on Porous Polyurethane Hydrogel Carrier, Bioresource Technology, Vol. 357, 2022, pp. 127344, https://doi.org/10.1016/j.biortech.2022.127344.
[25] G. K. Azeez, F. Y. A. Jaberi, S. A. Ahmed, A. A. Hussain, Sequencing batch Reactor (SBR) Technology in Wastewater Treatment: A Mini-Review, AIP Conf. Proc., Vol. 2806, 2023,
pp. 030014, https://doi.org/10.1063/5.0163432.
[26] P. Izadi, A. Eldyasti, Towards Mainstream Deammonification: Comprehensive Review on Potential Mainstream Applications and Developed Sidestream Technologies, Journal of Environmental Management, Vol. 279, 2021,
pp. 111615, https://doi.org/10.1016/j.jenvman.2020.111615.
[27] H. Yun, T. Wang, H. Meng, Using an Innovative Umbrella-Shape Membrane Module to Improve MBR for PN-ANAMMOX Process, Environ Sci Pollut Res, Vol. 30, 2023, pp. 27730-27742, https://doi.org/10.1007/s11356-022-24166-3.
[28] H. S. Yun, Y. S. Kim, H. S. Yoon, Characterization of Chlorella sorokiniana and Chlorella Vulgaris Fatty Acid Components Under A Wide Range of Light Intensity and Growth Temperature for Their Use As Biological Resources, Heliyon, Vol. 23, 2020, pp. e04447, https://doi.org/10.1016/j.heliyon.2020.e04447.
[29] T. N. D. Cao, H. Mukhtar, L. T. Le, D. P. H. Tran, M. T. T. Ngo, M. N. Pham, T. K. Q. Vo, X. T. Bui, Roles of Microalgae-Based Biofertilizer in Sustainability of Green Agriculture and Food-Water-Energy Security Nexus, Science of the Total Environment, Vol. 870, 2023, pp. 161927, https://doi.org/10.1016/j.scitotenv.2023.161927.
[30] S. N. Badar, M, Mohammad, Z. Emdadi,
Z. Yaakob, Algae and Their Growth Requirements For Bioenergy: a Review, Biofuels, Vol. 12, 2018, pp. 307-325, https://doi.org/10.1080/17597269.2018.1472978.
[31] K. E. Ogbonna, J. C. Ogbonna, O. U. Njoku,
K. Yamada, I. Suzuki, Effect of Organic Carbon Sources on Growth, Lipid Production and Fatty Acid Profile in Mixotrophic Culture of Scenedesmus Dimorphus (Turpin) Kützing, The Microbe, Vol. 3, 2024, pp. 100064, https://doi.org/10.1016/j.microb.2024.100064.
[32] H. R. Lim, K. S. Khoo, K. W, Chew, C. Chang,
H. S. H. Munawaroh, P. S. Kumar, N. D. Huy,
P. L. Show, Perspective of Spirulina Culture with Wastewater Into A Sustainable Circular Bioeconomy, Environmental Pollution, Vol. 284, 2021, pp. 117492, https://doi.org/10.1016/j.envpol.2021.117492.
[33] R. K. Goswami, S. Mehariya, O. P. Karthikeyan, V. K. Gupta, P. Verma, Multifaceted Application of Microalgal Biomass Integrated with Carbon Dioxide Reduction and Wastewater Remediation: A Flexible Concept for Sustainable Environment, Journal of Cleaner Production, Vol. 339, 2022,
pp. 130654, https://doi.org/10.1016/j.jclepro.2022.130654.
[34] A. Fallahi, F. Rezvani, H. Asgharnejad, E. K. Nazloo, N. Hajinajaf, B. Higgins, Interactions of Microalgae-Bacteria Consortia for Nutrient Removal from Wastewater: A Review, Chemosphere, Vol. 272, 2021, pp. 129878, https://doi.org/10.1016/j.chemosphere.2021.129878.
[35] N. Kumar, N. S. Geetansh, C. Himani, S. Kirti,
T. Saurabh, V. Pooja, S. Gaurav, Microalgae in Wastewater Treatment and Biofuel Production: Recent Advances, Challenges, and Future Prospects, In: Kumar, V. Thakur, I. S. (eds) Omics Insights in Environmental Bioremediation, Springer, Singapore, 2022, pp. 237-271, https://doi.org/10.1007/978-981-19-4320-1_11.
[36] A. Dube, A. K. Cowan, Algal Settling Ponds Contribute to Final Effluent Quality of Integrated Algal Pond Systems for Municipal Sewage Treatment, Water and Environment Journal,
Vol. 37, 2023, pp. 232-241, https://doi.org/10.1111/wej.12831.
[37] L. Aditya, T. M. I. Mahlia, L. N. Nguyen, H. P. Vu, L. D. Nghiem, Microalgae-Bacteria Consortium for Wastewater Treatment and Biomass Production, Sci. Total Environ, Vol. 838, 2022, https://doi.org/10.1016/j.scitotenv.2022.155871.
[38] T. T. D. Nguyen, X. T. Bui, T. Nguyen, H. H. Ngo, K. Y. A. Lin, C. Lin, L. T. Le, B. T. Dang, M. Bui, S. Varjani, Co-Culture of Microalgae-Activated Sludge in Sequencing Batch Photobioreactor Systems: Effects of Natural and Artificial Lighting on Wastewater Treatment, Bioresource Technology, Vol. 343, 2021, pp. 126091, https://doi.org/10.1016/j.biortech.2021.126091
[39] O. Emmanuel, Rozina, T. C. Ezeji, Utilization of Biomass-Based Resources for Biofuel Production: A Mitigating Approach Towards Zero Emission, Sustain. Chem. One World, Vol. 2, 2024, 100007. https://doi.org/10.1016/j.scowo.2024.100007.