Ultrasonic and Electrocoagulation Technologies in Wastewater Treatment and Material Circulation
Main Article Content
Abstract
Due to the emergence of new and persistent pollutants in wastewater, various advanced oxidation processes (AOPs) such as ultrasonic technology and electrocoagulation have been developed and employed for pollutant degradation, removal, and recovery from wastewater. In this study, we investigated the principles, influencing factors, and practical applications of several methods combining ultrasound and electrocoagulation with catalysts and demonstrated the efficiency of each method. Additionally, we analyzed the challenges associated with these ultrasonic methods and electrocoagulation in removing antibiotics and recovering pollutants from aqueous solutions and suggested solutions to these problems. Materials recovered after treatment can be utilized to improve soil quality.
References
M. J. W. Gavrilescu, Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal, Water, Vol. 13, No. 2, 2021, pp. 181, https://doi.org/10.3390/w13020181.
[2] M. I. G. Arroyave, J. B. Cano, G. A. J. T. O. Peñuela, Nanomaterial-Based Fluorescent Biosensors for Monitoring Environmental
Pollutants: A Critical Review, Talanta Open,
Vol. 2, 2020, pp. 100006, https://doi.org/10.1016/j.talo.2020.100006.
[3] M. P. Kumar, Microplastics and Its Removal Strategies from Marine Water, Chemosphere, 2021, pp. 125.
[4] H. Posavcic, I. Halkijevic, D. J. D. W. T. Vouk, Oily Wastewater Treatment By Hybrid Ultrasound and Electrocoagulation Batch Process, Desalination and Water Treatment, Vol. 235, 2021, pp. 127, https://doi.org/10.5004/dwt.2021.27665.
[5] J. Wang, Z. Wang, C. L.Vieira, J. M. Wolfson,
G. Pingtian, S. J. U. S. Huang, Review on the Treatment of Organic Pollutants in Water by Ultrasonic Technology, Ultrasonics Sonochemistry, Vol. 55, 2019, pp. 273, https://doi.org/10.1016/j.ultsonch.2019.01.017.
[6] N. A. A. Rubaiey, M. G. J. E. A. Barazanjy, Journal, T. Ultrasonic Technique in Treating Wastewater by Electrocoagulation, Engineering and Technology Journal, Vol. 36. No. 1C, 2018, pp. 54, https://doi.org/10.30684/etj.36.1C.9.
[7] P. Asaithambi, A. R. A. Aziz, B. Sajjadi, W. Daud, P. Research, Sono Assisted Electrocoagulation Process for the Removal of Pollutant from Pulp and Paper Industry Effluent, Environmental Science and Pollution Research, Vol. 24, 2017, pp. 5168, https://doi.org/10.1007/s11356-016-6909-5.
[8] M. Moradi, Y. Vasseghian, H. Arabzade, A. M. J. C. Khaneghah, Various Wastewaters Treatment by Sono-Electrocoagulation Process: A Comprehensive Review of Operational Parameters and Future Outlook, Chemosphere, Vol. 263, 2021, pp. 128314, https://doi.org/10.1016/j.chemosphere.2020.128314.
[9] H. Posavcic, D. Vouk, D. V. H. Posavcic,
I. Halkijevic, The Effects of Ultrasound and Electrocoagulation on Removal of Manganese from Wastewater, Engineering Review, Vol. 42, No. 2, 2022, pp. 50, https://doi.org/10.30765/er.1734.
[10] F. D. Andrade, R. Augusti, G. J. U. S. D. Lima, Ultrasound for the Remediation of Contaminated Waters with Persistent Organic Pollutants: A Short Review, Ultrasonics Sonochemistry, Vol. 78, 2021, pp. 105719, https://doi.org/10.1016/j.ultsonch.2021.105719.
[11] J. Wang, Z. Wang, C. L. Vieira, J. M. Wolfson,
G. Pingtian, S. Huang, Review on the Treatment of Organic Pollutants In Water by Ultrasonic
Technology, Ultrasonics Sonochemistry, Vol. 55, 2019, pp. 273-278, https://doi.org/10.1016/j.ultsonch.2019.01.017.
[12] M. M. Emamjomeh, M. Sivakumar, Review of Pollutants Removed By Electrocoagulation and Electrocoagulation/Flotation Processes, Ultrasonics Sonochemistry, Vol. 90, No. 5, 2009, pp. 1663, https://doi.org/10.1016/j.ultsonch.2019.01.017.
[13] A. R. A. Aziz, P. Asaithambi, W. M. A. B. Daud, Combination of Electrocoagulation with Advanced Oxidation Processes for the Treatment of Distillery Industrial Effluent, Process Safety and Environmental Protection, Vol. 99, 2016, pp. 227, https://doi.org/10.1016/j.jenvman.2008.12.011.
[14] A. A. Shah, S. Walia, H. Kazemian, Advancements in Combined Electrocoagulation Processes for Sustainable Wastewater Treatment: A Comprehensive Review of Mechanisms, Performance, and Emerging Applications, Water Research, 2024, pp. 121248, https://doi.org/10.1016/j.psep.2015.11.010.
[15] D. Luo, L. Wang, H. Nan, Y. Cao, H. Wang, T. V. Kumar, C. Wang, Phosphorus Adsorption by Functionalized Biochar: A Review, Environmental Chemistry Letters, Vol. 21, No. 1, 2023, pp. 497, https://doi.org/10.1016/j.watres.2024.121248.
[16] L. Peng, H. Dai, Y. Wu, Y. Peng, L. A. Lu, Comprehensive Review of Phosphorus Recovery from Wastewater by Crystallization Processes. Chemosphere, Vol. 197, 2018, pp. 768. https://doi.org/10.1007/s10311-022-01519-5.
[17] L. V. Giang, Potential Application of Boiling Granulation Technology to Recover Sulfur, Phosphorus and Potassium in Pig Farm Wastewater Towards A Circular Economy in Vietnam, Journal of Environment, Vol. 6, 2023, pp. 42, https://doi.org/10.1016/j.chemosphere.2018.01.098.
[18] A. A. Shah, T. H. Seehar, K. Sharma, S. S. Toor, In Hydrocarbon Biorefinery, Elsevier, 2022.
[19] X. Hu, J. Bao, J. Qiao, Hierarchical Cu2ZnSnS4 Microsphere As Sonocatalyst for the Degradation of Rhodamine B and Reduction of Cr (VI), Journal of Materials Science: Materials in Electronics, Vol. 33, 2022, pp. 7900-7912, https://doi.org/10.1007/s10854-022-07939-x.
[20] Z. L. Low, D. Y. S. Low, S. Y. Tang, S. Manickam, K. W. Tan, Z. H. Ban, Ultrasonic Cavitation: An Effective Cleaner and Greener Intensification Technology in the Extraction and Surface Modification of Nanocellulose, Ultrasonics Sonochemistry, Vol. 90, 2022, pp. 106176, https://doi.org/10.1007/s10854-022-07939-x.
[21] Ö. Johansson, T. Pamidi, M. Khoshkhoo, Å. Sandström, Sustainable and Energy Efficient Leaching of Tungsten (W) by Ultrasound Controlled Cavitation, Luleå Tekniska Universitet, 2017.
[22] R. Hassandoost, A. Kotb, Z. Movafagh, M. Esmat, R. Guegan, S. Endo, W. Jevasuwan, N. Fukata, Y. Sugahara, A. Khataee, Nanoarchitecturing Bimetallic Manganese Cobaltite Spinels for Sonocatalytic Degradation of Oxytetracycline. Chemical Engineering Journal, Vol. 431, 2022, pp. 133851, https://doi.org/10.1080/20550324.2019.1710974,
[23] E. Kuna, R. Behling, S. Valange, G. Chatel, J. C. Colmenares, Sonocatalysis: A Potential Sustainable Pathway for the Valorization of Lignocellulosic Biomass and Derivatives. Topics in Current Chemistry, Vol. 1, 2018, https://doi.org/10.1016/j.cej.2021.133851.
[24] S. Mapukata, B. Ntsendwana, T. Mokhena,
L. Sikhwivhilu, Advances on Sonophotocatalysis As A Water and Wastewater Treatment Technique: Efficiency, Challenges and Process Optimisation, Frontiers in Chemistry, Vol. 11, 2023, https://doi.org/10.1007/978-3-319-90653-9_1.
[25] G. Wang, Y. Huang, G. Li, H. Zhang,
Y. Wang, B. Li, J. Wang, Y. Song, Preparation of A Novel Sonocatalyst, Au/Niga2O4-Au-Bi2O3 Nanocomposite, and Application in Sonocatalytic Degradation of Organic Pollutants, Ultrasonics Sonochemistry Vol. 38, 2017, pp. 335, https://doi.org/10.3389/fchem.2023.1252191.
[26] A. V. Karim, S. Krishnan, A. Shriwastav, Sonocatalytic Degradation of Tetracycline with Cu-doped TiO2 Nanoparticles as the Catalyst: Optimization, Kinetics, and Mechanism, Water, Air, Soil Pollution, Vol. 234, 2023, pp. 41, https://doi.org/10.1007/s11270-022-06053-2.
[27] N. H. Ince, A. Ziylan, Single and Hybrid Applications of Ultrasound for Decolorization and Degradation of Textile Dye Residuals in Water, Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications, 2015, pp. 261-293, https://doi.org/10.1002/9781118721001.ch7.
[28] G. Bampos, Z. Frontistis, Sonocatalytic Degradation of Butylparaben in Aqueous
Phase Over Pd/C Nanoparticles, Environmental Science, Pollution Research, Vol. 26, 2019,
pp. 11905-11919,
https://doi.org/10.1007/s11356-019-04604-5.
[29] A. Hassani, A. Khataee, S. Karaca, C. Karaca,
P. Gholami, Sonocatalytic Degradation of Ciprofloxacin Using Synthesized TiO2 Nanoparticles on Montmorillonite, Ultrasonics Sonochemistry, Vol. 35, 2017, pp. 251-262, https://doi.org/10.1016/j.ultsonch.2016.09.027.
[30] S. Gadge, A. Tamboli, M. Shinde, H. Fouad,
C. Terashima, R. Chauhan, S. Gosavi, Sonocatalytic Degradation of Methylene Blue using Spindle Shaped Cerium Oxide Nanoparticles, Journal of Solid State Electrochemistry, Vol. 27, 2023, pp. 2005-2015, https://doi.org/10.1007/s10008-023-05464-3.
[31] T. M. Nguyen, V. T. Dang, M. K. Nguyen, T. M. H. Tran, Sonodegradation of Sulfamethoxazole in Water Using Red Mud and Rice Husk Biochar Catalysis. VNU Journal of Science: Earth and Environmental Sciences, Vol. 40, No. 1, 2024, https://doi.org/10.25073/2588-1094/vnuees.5035.
[32] K. Ninomiya, H. Takamatsu, A. Onishi,
K. Takahashi, N. Shimizu, Sonocatalytic–Fenton Reaction for Enhanced OH Radical Generation and Its Application to Lignin Degradation, Ultrasonics Sonochemistry, Vol. 20, No. 4, 2013,
pp. 1092-1097, https://doi.org/10.1016/j.ultsonch.2013.01.007.
[33] Rakhmania, H. Kamyab, M. A. Yuzir, N. Abdullah, L. M. Quan, F. A. Riyadi, R. J. S. Marzouki, Recent applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review, Sustainability, Vol. 14, 2022, pp. 1985, https://doi.org/10.3390/su14041985.
[34] M. Moradi, Y. Vasseghian, H. Arabzade, A. M. J. C. Khaneghah, Various wastewaters Treatment By Sono-Electrocoagulation Process: A Comprehensive Review of Operational Parameters and Future Outlook, Chemosphere, Vol. 263, 2021, pp. 128314.
[35] P. Nidheesh, J. Scaria, D. S. Babu, M. S. J. C. Kumar, An overview on Combined Electrocoagulation-Degradation Processes for the Effective Treatment of Water and Wastewater, Chemosphere, Vol. 26, 2021, pp. 127907, https://doi.org/10.1016/j.chemosphere.2020.127907.
[36] A. Hassani, M. Malhotra, A. V. Karim,
S. Krishnan, P. Nidheesh, Recent Progress on Ultrasound-Assisted Electrochemical Processes: A Review on Mechanism, Reactor Strategies, and Applications for Wastewater Treatment, Environmental Research, Vol. 205, 2022,
pp. 112463, https://doi.org/10.1016/j.envres.2021.112463.
[37] Y. G. Asfaha, A. K. Tekile, F. Zewge, Hybrid Process of Electrocoagulation and Electrooxidation System gor Wastewater Treatment: A Review. Cleaner Engineering Technology, Vol. 4, 2021, pp. 100261, https://doi.org/10.1016/j.clet.2021.100261.
[38] H. Sadeghi, A. Mohammadpour, M. R. Samaei,
A. Azhdarpoor, M. Hadipoor, H. Mehrazmay,
A. M. Khaneghah, Application of Sono-Electrocoagulation in Arsenic Removal From Aqueous Solutions and the Related Human Health Risk Assessment, Environmental Research,
Vol. 212, 2022, pp. 113147, https://doi.org/10.1016/j.envres.2022.113147.
[39] A. Arka, C. Dawit, A. Befekadu, S. K. Debela,
P. Asaithambi, Wastewater Treatment Using Sono-Electrocoagulation Process: Optimization Through Response Surface Methodology, Sustainable Water Resources Management, Vol. 8, No. 3, 2022, pp. 61, https://doi.org/10.1007/s40899-022-00649-6.
[40] P. Asaithambi, R. Govindarajan, Hybrid Sono-Electrocoagulation Process for the Treatment of Landfill Leachate Wastewater: Optimization Through A Central Composite Design Approach, Environmental Processes, Vol. 8, 2021,
pp. 793-816,
https://doi.org/10.1007/s40710-021-00509-z.
[41] D. M. Gabriel, L. M. Pitombo, L. M. T. Rosa,
A. A. Navarrete, W. G. Botero, J. B. D. Carmo, L. C. D. Oliveira, The Environmental Importance of Iron Speciation in Soils: Evaluation of Classic Methodologies, Environmental Monitoring, https://doi.org/10.1007/s10661-021-08874-w.
[42] P. V. Ngobeni, M. Basitere, A. Thole, Treatment of Poultry Slaughterhouse Wastewater Using Electrocoagulation: A Review, Water Practice Technology, Vol. 17, 2022, pp. 38-59, https://doi.org/10.2166/wpt.2021.108.
[43] W. Zeng, D. Wang, Z. Wu, L. He, Z. Luo,
J. Yang, Recovery of Nitrogen and Phosphorus Fertilizer from Pig Farm Biogas Slurry and Incinerated Chicken Manure Fly Ash, Science of the Total Environment, Vol. 782, 2021,
pp. 146856, https://doi.org/10.1016/j.scitotenv.2021.146856.
[44] X. E. Yang, X. Wu, H. L. Hao, Z. L. He, Mechanisms and assessment of Water Eutrophication, Journal of Zhejiang University Science B, Vol 9, 2008, pp. 197-209, https://doi.org/10.1631/jzus.B0710626.
[45] T. D. Khoa, N. T. D. Tring, H. T. N. Huyen, N. H. Chieu, N. T. Thi, D. T. M. Hieu, N. Q. Long, the Study of Recovery and Characterization of Struvite Derived from Wastewater, CTU Journal of Science, Vol. 57, No. 6, 2021, pp 90, https://doi.org/10.22144/ctu.jvn.2021.175.
[46] W. Luo, Y. Fang, L. Song, Q. Niu, Production of Struvite by Magnesium Anode Constant Voltage Electrolytic Crystallisation from Anaerobically Digested Chicken Manure Slurry, Environmental Research, Vol. 214, 2022, pp. 113991, https://doi.org/10.1016/j.envres.2022.113991.
[47] G. P. Bhoi, K. S. Singh, D. A. J. Connor, Phosphorus Removal and Recovery From Anaerobic Bioreactor Effluent Using A Batch Electrocoagulation Process, Water Quality Research Journal, Vol. 58, No. 4, 2023, pp. 247, https://doi.org/10.2166/wqrj.2023.111.